Structurally relaxed models of the Si(001)-SiO2 interface
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Using density-functional theory, we compute the optical and static dielectric constants for a set of Zr silicates modeled by various SiO2 crystals, with Zr atoms substitutional to Si, and by an amorphous structure. We then derive a microscopic scheme that ...
We uncover the constitutive relation of graphene and probe the physics of its optical phonons by studying its Raman spectrum as a function of uniaxial strain. We find that the doubly degenerate E(2g) optical mode splits in two components: one polarized alo ...
We carry out ion scattering simulations to investigate the nature of the transition region at the Si(100)-SiO2 interface. Ion scattering experiments performed in the channeling geometry provide us with a genuine interfacial property, the excess Si yield, r ...
The performance of many silicon devices is limited by electronic recombination losses at the crystalline silicon (c-Si) surface. A proper surface passivation scheme is needed to allow minimizing these losses. The surface passivation properties of amorphous ...
We discuss the structural, electronic and dielectric properties of a model structure of the Si(100)-SiO2 interface that accounts for the amorphous nature of the oxide. After showing that the structural properties of this model are consistent with a variety ...
Carbon fiber reinforced polymer composites (CFRPs) are inherently multifunctional materials that, in addition to their primary function as a structural material, allow for the sensing and monitoring of in situ damage nucleation and evolution by the measure ...
Using a first-principles approach, we investigate the origin of the fine structure in Si 2p photoelectron spectra at the Si(100)-(2x1) surface and at the Si(100)-SiO2 interface. Calculated and measured shifts show very good agreement for both systems. By u ...
We address the rate of O-2 diffusion through the oxide layer at Si-SiO2 interfaces using an atomic-scale approach. In particular, we investigate the combined effect of a percolative diffusion mechanism and of a dense oxide layer located close to the silico ...
Silicon dioxide (SiO2) films grown on silicon monocrystal (Si) substrates form the gate oxides in current Si-based microelectronics devices. The understanding at the atomic scale of both the silicon oxidation process and the properties of the Si(100)-SiO2 ...
We construct atomistic models of the Si(100)-SiO2 interface in accord with available experimental data. Combining classical and first-principles simulation methods, we generate transition structures from crystalline silicon to disordered SiO2. The generati ...