Dynamique stellaireLa dynamique stellaire est la branche de l'astrophysique qui décrit de manière statistique les mouvements des étoiles du fait de leur propre gravité. La différence principale avec la mécanique céleste est que toute étoile contribue plus ou moins au champ gravitationnel total, alors que la mécanique céleste privilégie les corps massifs et leurs effets sur les autres corps. La dynamique stellaire porte habituellement sur les propriétés statistiques globales de plusieurs orbites plutôt que sur les valeurs spécifiques des positions et des vitesses des orbites individuelles.
HomolyseEn chimie, une homolyse, rupture homolytique ou clivage homolytique est la rupture d'une liaison covalente en deux fragments ; chacun retenant l'un des deux électrons du doublet d'électrons liants, pour former deux radicaux. On l'obtient en utilisant de la lumière (photolyse, notée « hν »), des peroxydes ou la chaleur (thermolyse). 260px La formation de radicaux se fait de façon préférentielle dans des solvants non polaires, les solvants polaires favorisant généralement la formation d'ions.
Surface d'énergie potentielleUne surface d'énergie potentielle est généralement utilisée dans l'approximation adiabatique (ou approximation de Born-Oppenheimer) en mécanique quantique et mécanique statistique afin de modéliser les réactions chimiques et les interactions dans des systèmes chimiques et physiques simples. Le nom de « (hyper)surface » provient du fait que l'énergie totale d'un système atomique peut être représentée comme une courbe ou une surface, pour laquelle les positions atomiques sont des variables.
Local-density approximationLocal-density approximations (LDA) are a class of approximations to the exchange–correlation (XC) energy functional in density functional theory (DFT) that depend solely upon the value of the electronic density at each point in space (and not, for example, derivatives of the density or the Kohn–Sham orbitals). Many approaches can yield local approximations to the XC energy. However, overwhelmingly successful local approximations are those that have been derived from the homogeneous electron gas (HEG) model.
Théorie des bandesredresse=1.5|vignette|Représentation schématique des bandes d'énergie d'un solide. représente le niveau de Fermi. thumb|upright=1.5|Animation sur le point de vue quantique sur les métaux et isolants liée à la théorie des bandes En physique de l'état solide, la théorie des bandes est une modélisation des valeurs d'énergie que peuvent prendre les électrons d'un solide à l'intérieur de celui-ci. De façon générale, ces électrons n'ont la possibilité de prendre que des valeurs d'énergie comprises dans certains intervalles, lesquels sont séparés par des bandes d'énergie interdites (ou bandes interdites).
Core (microarchitecture)La microarchitecture Core est une microarchitecture x86 d'Intel, qui succède en 2006 aux architectures P6 et NetBurst. Elle fut utilisée par tous les processeurs x86 produits par Intel à l'époque, depuis le processeur pour ordinateur portable jusqu'au processeur Xeon pour serveur, d'abord gravés en puis en . Les processeurs de marque Core 2 utilisent exclusivement l'architecture Core. « Core » est en anglais un nom commun signifiant « noyau » ou « cœur », et désignant en informatique l'ensemble des structures constituant un seul microprocesseur : unités de décodages, de prédiction, d'exécution, cache L1, etc.
Microprocesseur multi-cœurvignette|Un processeur quad-core AMD Opteron. vignette|L’Intel Core 2 Duo E6300 est un processeur double cœur. Un microprocesseur multi-cœur (multi-core en anglais) est un microprocesseur possédant plusieurs cœurs physiques fonctionnant simultanément. Il se distingue d'architectures plus anciennes (360/91) où un processeur unique commandait plusieurs circuits de calcul simultanés. Un cœur (en anglais, core) est un ensemble de circuits capables d’exécuter des programmes de façon autonome.
Couche minceUne couche mince () est un revêtement dont l’épaisseur peut varier de quelques couches atomiques à une dizaine de micromètres. Ces revêtements modifient les propriétés du substrat sur lesquels ils sont déposés. Ils sont principalement utilisés : dans la fabrication de composants électroniques telles des cellules photovoltaïques en raison de leurs propriétés isolantes ou conductrices ; pour la protection d'objets afin d'améliorer les propriétés mécaniques, de résistance à l’usure, à la corrosion ou en servant de barrière thermique.
SiliciumLe silicium est l'élément chimique de numéro atomique 14, de symbole Si. Ce métalloïde tétravalent appartient au groupe 14 du tableau périodique. C'est l'élément le plus abondant dans la croûte terrestre après l'oxygène, soit 25,7 % de sa masse, mais il n'est comparativement présent qu'en relativement faible quantité dans la matière constituant le vivant.
Dopage (semi-conducteur)Dans le domaine des semi-conducteurs, le dopage est l'action d'ajouter des impuretés en petites quantités à une substance pure afin de modifier ses propriétés de conductivité. Les propriétés des semi-conducteurs sont en grande partie régies par la quantité de porteurs de charge qu'ils contiennent. Ces porteurs sont les électrons ou les trous. Le dopage d'un matériau consiste à introduire, dans sa matrice, des atomes d'un autre matériau. Ces atomes vont se substituer à certains atomes initiaux et ainsi introduire davantage d'électrons ou de trous.