Lq,p-cohomology of Riemannian manifolds and simplicial complexes of bounded geometry
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
The matrix completion problem consists of finding or approximating a low-rank matrix based on a few samples of this matrix. We propose a new algorithm for matrix completion that minimizes the least-square distance on the sampling set over the Riemannian ma ...
This note is motivated by a recently published paper (Biswas and Mukherjee in Commun Math Phys 322(2):373-384, 2013). We prove a no-go result for the existence of suitable solutions of the Strominger system in a compact complex parallelizable manifold . Fo ...
Numerous dimensionality reduction problems in data analysis involve the recovery of low-dimensional models or the learning of manifolds underlying sets of data. Many manifold learning methods require the estimation of the tangent space of the manifold at a ...
We prove upper bounds for Hecke-Laplace eigenfunctions on certain Riemannian manifolds X of arithmetic type, uniformly in the eigenvalue and the volume of the manifold. The manifolds under consideration are d-fold products of 2-spheres or 3-spheres, realiz ...
Let Q be a Riemannian G-manifold. This paper is concerned with the symmetry reduction of Brownian motion in Q and ramifications thereof in a Hamiltonian context. Specializing to the case of polar actions, we discuss various versions of the stochastic Hamil ...
This thesis is a study of harmonic maps in two different settings. The first part is concerned with harmonic maps from smooth metric measure spaces to Riemannian manifolds. The second part is study of harmonic maps from Riemannian polyhedra to non-positive ...
We study Sobolev-type metrics of fractional order s a parts per thousand yen 0 on the group Diff (c) (M) of compactly supported diffeomorphisms of a manifold M. We show that for the important special case M = S (1), the geodesic distance on Diff (c) (S (1) ...
We revisit the problem of extending the notion of principal component analysis (PCA) to multivariate datasets that satisfy nonlinear constraints, therefore lying on Riemannian manifolds. Our aim is to determine curves on the manifold that retain their cano ...
The geodesic distance vanishes on the group of compactly supported diffeomorphisms of a Riemannian manifold of bounded geometry, for the right invariant weak Riemannian metric which is induced by the Sobolev metric of order on the Lie algebra of vector fie ...
We propose a segmentation method based on the geometric representation of images as two-dimensional manifolds embedded in a higher dimensional space. The segmentation is formulated as a minimization problem, where the contours are described by a level set ...
Institute of Electrical and Electronics Engineers2014