Coordination dependent magnetic properties of 3d and 4d metal nano-structures
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
This thesis presents a combined experimental and theoretical study of the classical and quantum magnetization dynamics in single magnetic adatoms and molecules, and on the classical and quantum coherent control thereof. First, a detailed description of the ...
We investigate, using a first-principles density functional methodology, the nature of magnetism in monolayer 1T phase of tantalum disulfide (1T-TaS2). Magnetism in the insulating phase of TaS2 is a longstanding puzzle and has led to a variety of theoretic ...
Development of novel materials with advanced properties is one of the main research directions of chemistry. New substances are not only crucial for many current technological applications but also should satisfy the needs of tomorrow. Industry often requi ...
We have witnessed a wide range of theoretical as well as experimental investigations to envisage external stimuli induced changes in electronic, optical and magnetic properties in the metal organiccomplexes, while hybrid perovskites have recently joined th ...
Among the two materials families used in nanophotonics, the fundamental mode for metal nanostructures is electric, while that for dielectric nanostructures is magnetic. Consequently, the optical properties of hybrid dimers that incorporate both materials h ...
The insulating rare-earth magnet LiY1-xHoxF4 has received great attention because a laboratory field applied perpendicular to its crystallographic c axis converts the low-energy electronic spin Hamiltonian into the (dilute) transverse field Ising model. Th ...
The magnetic force microscope (MFM) is an established experimental tool for imaging stray fields with high spatial resolution and sensitivity. The MFM contrast can however contain contributions from the sample topography, variations in the surface Kelvin p ...
Thin beams made of magnetorheological elastomers embedded with hard-magnetic particles (hard-MREs) are capable of large deflections under an applied magnetic field. We propose a comprehensive framework, comprising a beam model and 3D finite element modelin ...
The magnetic properties and the atomic scale morphology of bimetallic two-dimensional nanoislands, epitaxially grown on fcc(111) metal surfaces, have been studied by means of Magneto-Optical Kerr Effect and Scanning Tunneling Microscopy. We investigate the ...
alpha-RuCl3 is a promising candidate material to realize the so far elusive quantum spin liquid ground state. However, at low temperatures, the coexistence of different exchange interactions couple the effective pseudospins into an antiferromagnetically zi ...