**Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?**

Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur GraphSearch.

Publication# Numerical investigation of particle-laden thermally driven turbulent flows in enclosure

Résumé

Nowadays, the global increase of energy demand and the necessity to satisfy high safety standards have led engineers and scientists to focus their efforts in order to understand and describe fundamental phenomena that are crucial for a correct design of the new generation nuclear power plants. In this framework, the present thesis aims at providing a first insight of the mechanisms of deposition of aerosol particles inside a closed geometry where relatively strong currents are present due to turbulent natural convective flows. Direct Numerical Simulations were conducted coupling high-order pseudo-spectral code with a Lagrangian particle tracker. Laminar flows were computed in two and three dimensions in order to benchmark the code with published reference data. A parametric study was performed for three different aerosol micro-size particle diameters and two super-critical Rayleigh numbers in a square cavity. An extended analysis of the turbulent flows is provided in terms of first and second order statistics, time-averaged momentum and energy budgets, and moreover, important terms appearing in the transport equations of turbulent kinetic energy and temperature variance are also briefly discussed. Furthermore, the evolution in time of particle concentration for the three different diameters is considered. The text provides information about the deposition velocity, the deposition patterns on the cavity surfaces, the influence of lift and thermophoretic forces and the fractal dimension. The same size dependent parametric study for the three different sets of micro-size particles was carried out in a fully three-dimensional closed cubic cavity for one super-critical Rayleigh number. A detailed investigation of the turbulence was performed by means of statistical quantities, signal processing and conditional averaging, in order to get a general view of the complexity of the flow and its characteristics. Further on, the sedimentation process is studied in the same way as for the two dimensional case. Finally a simple theoretical deposition model is provided in order to interpret the numerical results for the aerosol phase.

Official source

Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Concepts associés

Chargement

Publications associées

Chargement

Concepts associés (30)

Direct numerical simulation

A direct numerical simulation (DNS) is a simulation in computational fluid dynamics (CFD) in which the Navier–Stokes equations are numerically solved without any turbulence model. This means that the

Turbulence

vignette|Léonard de Vinci s'est notamment passionné pour l'étude de la turbulence.
La turbulence désigne l'état de l'écoulement d'un fluide, liquide ou gaz, dans lequel la vitesse présente en tout poi

Équation de continuité

vignette|mécanique des fluides
En mécanique des fluides, le principe de conservation de la masse peut être décrit par l'équation de continuité sous plusieurs formes différentes : locale conservative (

Publications associées (62)

Chargement

Chargement

Chargement

In nuclear safety, most severe accident scenarios lead to the presence of fission products in aerosol form in the closed containment atmosphere. It is important to understand the particle depletion process to estimate the risk of a release of radioactivity to the environment should a containment break occur. As a model for the containment, we use the three-dimensional differentially heated cavity (DHC) problem. DHC is a cubical box with a hot wall and a cold wall on vertical opposite sides. On the other walls of the cube we have adiabatic boundary conditions. For the velocity field the no-slip boundary condition is valid. The flow of the air in the cavity is described by the Boussinesq equations. Complex flow patterns develop and the flow characteristics depend on the non-dimensional Rayleigh and Prandtl numbers. The predominant flow type in the DHC is a turbulent natural convection flow. This work aims at reaching Rayleigh numbers and turbulent levels as high as possible given the available computational resources. The method used to simulate the turbulent flow is the large eddy simulation (LES) where the dynamics of the large eddies is resolved by the computational grid and the small eddies are modelled by the introduction of subgrid scale quantities using a filter function. Numerically, the LES equations are discretized by the spectral element method. Particle trajectories are computed using the Lagrangian particle tracking method, including the relevant forces (drag, gravity, thermophoresis). Four different particle sets with each set containing one million particles and diameters of 10 μm, 15 μm, 25 μm and 35 μm are simulated. The complexity and the size of the large three-dimensional problem requires the use of massively parallel supercomputers. Spectral element methods are naturally suitable for parallelisation by distributing the elements among the processors. For the Lagrangian particle tracking we use a method where equal numbers of particles are assigned to every processor. The flow field is broadcast and every particle processor tracks the assigned particles, a procedure which leads to a perfect load balancing. Simulation results for the flow field and particle sizes from 15 μm to 35 μm at a Rayleigh number of 109 are compared to previous results from a direct numerical simulation. First order statistics of the LES flow fields are in very good agreement with the direct numerical simulation while the agreement of second order moments is fair. Also the turbulent structures associated to the maximum of turbulent kinetic energy production are correctly reproduced. Particle statistics in the LES and the direct numerical simulation were similar and the settling rates practically identical. Contrary to previous particle simulations in LES, it was found that no model was necessary for the influence of the unresolved flow scales on the particle motions. This can be explained, because the important settling mechanism is through gravity and particle deposition at the walls by turbophoresis is negligible.

The research work reported in the present dissertation is aimed at the analysis of complex physical phenomena involving instabilities and nonlinearities occurring in fluids through state-of-the-art numerical modeling. Solutions of intricate fluid physics problems are devised in two particularly arduous situations: fluid domains with moving boundaries and the high-Reynolds-number regime dominated by nonlinear convective effects. Shear-driven flows of incompressible Newtonian fluids enclosed in cavities of varying geometries are thoroughly investigated in the two following frameworks: transition with a free surface and confined turbulence. The physical system we consider is made of an incompressible Newtonian fluid filling a bounded, or partially bounded cavity. A series of shear-driven flows are easily generated by setting in motion some part of the container boundary. These driven-cavity flows are not only technologically important, they are of great scientific interest because they display almost all physical fluid phenomena that can possibly occur in incompressible flows, and this in the simplest geometrical settings. Thus corner eddies, secondary flows, longitudinal vortices, complex three-dimensional patterns, chaotic particle motions, nonuniqueness, transition, and turbulence all occur naturally and can be studied in the same geometry. This facilitates the comparison of results from experiments, analysis, and computation over the whole range of Reynolds numbers. The flows under consideration are part of a larger class of confined flows driven by linear or angular momentum gradients. This dissertation reports a detailed study of a novel numerical method developed for the simulation of an unsteady free-surface flow in three-space-dimensions. This method relies on a moving-grid technique to solve the Navier-Stokes equations expressed in the arbitrary Lagrangian-Eulerian (ALE) kinematics and discretized by the spectral element method. A comprehensive analysis of the continuous and discretized formulations of the general problem in the ALE frame, with nonlinear, non-homogeneous and unsteady boundary conditions is presented. In this dissertation, we first consider in the internal turbulent flow of a fluid enclosed in a bounded cubical cavity driven by the constant translation of its lid. The solution of this flow relied on large-eddy simulations, which served to improve our physical understanding of this complex flow dynamics. Subsequently, a novel subgrid model based on approximate deconvolution methods coupled with a dynamic mixed scale model was devised. The large-eddy simulation of the lid-driven cubical cavity flow based on this novel subgrid model has shown improvements over traditional subgrid-viscosity type of models. Finally a new interpretation of approximate deconvolution models when used with implicit filtering as a way to approximate the projective grid filter was given. This led to the introduction of the grid filter models. Through the use of a newly-developed method of numerical simulation, in this dissertation we solve unsteady flows with a flat and moving free-surface in the transitional regime. These flows are the incompressible flow of a viscous fluid enclosed in a cylindrical container with an open top surface and driven by the steady rotation of the bottom wall. New flow states are investigated based on the fully three-dimensional solution of the Navier-Stokes equations for these free-surface cylindrical swirling flows, without resorting to any symmetry properties unlike all other results available in the literature. To our knowledge, this study delivers the most general available results for this free-surface problem due to its original mathematical treatment. This second part of the dissertation is a basic research task directed at increasing our understanding of the influence of the presence of a free surface on the intricate transitional flow dynamics of shear-driven flows.

Claudia Maria Colciago, Simone Deparis, Davide Forti

Several models exist for the simulation of vascular flows; they span from simple circuit models to full three-dimensional ones that take into account detailed features of the blood and of the arterialwall. Eachmodel comeswith both benefits and drawbacks, the main denominator being a compromise between detailed resolution requirements versus computational time. We first present a fluid-structure interaction computationalmodelwhere both the fluid and the structure are three dimensional. In particular, the fluid includes modeling of large eddies by the variationalmultiscalemethod. After time and space discretizations carried out by finite differences and finite elements, respectively, we set up a parallel solver based ondomain decomposition and a FaCSI preconditioner. These simulations allow one to capture details of the flow dynamics and of the structure deformation even in the transitional regime characterizing hemodynamics in the aorta. It takes roughly 10 hours to complete a simulation of one heartbeat with 35 million degrees of freedom on 2048 cores. We then reduce both the model and its numerical complexity. The structural model is simplified to a two-dimensional membrane located at the fluid-structure interface and the fluid computational domain is fixed. For a fixed geometry andmesh, these assumptions allow one to apply proper orthogonal decomposition and generate a space discretization which has only a few dozen degrees of freedom. It is then possible to perform the simulation of one heartbeat on a laptop in less than one second. Themodeling and numerical reduction therefore allows a dramatic reduction of computational time. However, the price to pay comes, on the one hand, in terms of the preparation of a reduced basis specific to the patient and the geometry of the vessel and, on the other hand, with a detriment of certain quantities of interest. For example, when using a finite element discretization with 9 million degrees of freedom, the offline part takes about 12 hours on 720 cores for the example provided in this work; in this case, the flow profiles in the aorta are pretty close to the full three-dimensional