Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
vignette|redresse=2|Couches limites laminaires et turbulentes d'un écoulement sur une plaque plane (avec profil des vitesses moyennes). La couche limite est la zone d'interface entre un corps et le fluide environnant lors d'un mouvement relatif entre les deux. Elle est la conséquence de la viscosité du fluide et est un élément important en mécanique des fluides (aérodynamique, hydrodynamique), en météorologie, en océanographie vignette|Profil de vitesses dans une couche limite. Lorsqu'un fluide réel s'écoule le long d'une paroi d'un corps supposé fixe, les vitesses sur la paroi sont nulles alors qu'à l'infini (c'est-à-dire loin du corps) elles sont égales à la vitesse de l'écoulement. Sur une normale à la paroi, la vitesse doit donc dans tous les cas varier entre 0 et un maximum. La loi de variation dépend de la viscosité du fluide qui induit un frottement entre les couches voisines : si l'on considère deux couches successives, la couche la plus lente tend à freiner la couche la plus rapide qui, en retour, tend à l'accélérer. Dans ces conditions, une forte viscosité tend à égaliser au maximum les vitesses localement. Au contraire, si le fluide est peu visqueux, les différentes couches sont beaucoup plus indépendantes de leurs voisines : la vitesse à l'infini se maintient jusqu'à une courte distance du corps et il y a une variation plus forte des vitesses dans une petite épaisseur proche de la paroi que l'on nomme la couche limite. vignette|Schéma de principe de l'évolution de la couche limite au long d'un corps profilé de révolution, d'après Paul S. Granville. Dans le premier cas (forte viscosité du fluide), il faut utiliser les équations générales du fluide visqueux. Dans le second (fluide peu visqueux), on peut utiliser dans la couche limite des équations simplifiées complétées par des résultats expérimentaux ; au-delà de la couche limite, on utilise les équations, également plus simples, du fluide parfait (justiciable de l'équation de Bernoulli).
Michael Lehning, Dylan Stewart Reynolds, Michael Haugeneder
Fernando Porté Agel, Marwa Souaiby