Dynamics of Long-Range Ordering in an Exciton-Polariton Condensate
Publications associées (33)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Second-order time correlation measurements with a temporal resolution better than 3 ps were performed on a CdTe microcavity where spontaneous Bose-Einstein condensation is observed. After the laser pulse, the nonresonantly excited thermal polariton populat ...
The interplay between order and disorder in photonic lattices opens up a wide range of novel optical scattering mechanisms, cavity-mode resonances, and applications that can be obscured by typical ordered design approaches to photonics. Striking examples i ...
Disorder, ubiquitously present in realistic structures, is generally thought to disturb the performance of analog wave devices, as it often causes strong multiple scattering effects that largely arrest wave transportation. Contrary to this general view, he ...
Tuning the electronic properties of graphene by adatom deposition unavoidably introduces disorder into the system, which directly affects the single-particle excitations and electrodynamics. Using angle-resolved photoemission spectroscopy (ARPES) we trace ...
Exciton-polaritons are hybrid quasi-particles, eigenstates of the strong coupling regime between light and matter. Their Bose-Einstein condensation has been recently demonstrated, opening the way to several fundamental investigations on the associated phen ...
Fluorescence microscopy techniques are well established research tools and have proven their use in a large variety of biomedical applications. Microscopic molecular contrast is achieved by imaging fluorescent dyes that bind specifically to a molecule of i ...
We investigate the properties of a strongly interacting superfluid gas of 6Li2 Feshbach molecules forming a thin film confined in a quasi-two-dimensional channel with a tunable random potential, creating a microscopic disorder. We measure the atomic curren ...
Optical Coherence Microscopy (OCM) is a three-dimensional imaging technique that provides cross-sectional views of the subsurface microstructure of biological tissue, with a high axial and lateral resolution. In OCM, a low time coherence light source is sp ...
The crystal structure of a disordered form of Cr1/3NbS2 has been characterized using diffraction and inelastic scattering of synchrotron radiation. In contrast to the previously reported symmetry (P6322), the crystal can be ...
We give an overview of the coherence properties of exciton-polariton condensates generated by optical parametric scattering. Different aspects of the first-order coherence (g((1))) have been investigated. The spatial coherence extension of a two-dimensiona ...