Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
We propose a new statistical dictionary learning algorithm for sparse signals that is based on an α-stable innovation model. The parameters of the underlying model—that is, the atoms of the dictionary, the sparsity index α and the dispersion of the transfo ...
We propose an iterative reconstruction scheme for optical diffraction tomography that exploits the split-step nonparaxial (SSNP) method as the forward model in a learning tomography scheme. Compared with the beam propagation method (BPM) previously used in ...
Graph signals offer a very generic and natural representation for data that lives on networks or irregular structures. The actual data structure is however often unknown a priori but can sometimes be estimated from the knowledge of the application domain. ...
In this paper, we propose a novel Deep Micro-Dictionary Learning and Coding Network (DDLCN). DDLCN has most of the standard deep learning layers (pooling, fully, connected, input/output, etc.) but the main difference is that the fundamental convolutional l ...
We study the problem of learning constitutive features for the effective representation of graph signals, which can be considered as observations collected on different graph topologies. We propose to learn graph atoms and build graph dictionaries that pro ...
Classifiers based on sparse representations have recently been shown to provide excellent results in many visual recognition and classification tasks. However, the high cost of computing sparse representations at test time is a major obstacle that limits t ...
Sparse representations of images in well-designed dictionaries can be used for effective classification. Meanwhile, training data available in most realistic settings are likely to be exposed to geometric transformations, which poses a challenge for the de ...
We consider design of sparse controllers for a stochastic linear system with infinite horizon quadratic objective. We formulate the non-sparse optimal solution through a semidefinite program for the second order moments of the states and inputs. Given that ...
In this paper, we consider learning dictionary models over a network of agents, where each agent is only in charge of a portion of the dictionary elements. This formulation is relevant in big data scenarios where multiple large dictionary models may be spr ...
In this paper, we consider learning dictionary models over a network of agents, where each agent is only in charge of a portion of the dictionary elements. This formulation is relevant in Big Data scenarios where large dictionary models may be spread over ...