Inclusion orderIn the mathematical field of order theory, an inclusion order is the partial order that arises as the subset-inclusion relation on some collection of objects. In a simple way, every poset P = (X,≤) is (isomorphic to) an inclusion order (just as every group is isomorphic to a permutation group – see Cayley's theorem). To see this, associate to each element x of X the set then the transitivity of ≤ ensures that for all a and b in X, we have There can be sets of cardinality less than such that P is isomorphic to the inclusion order on S.
Tableau (structure de données)En informatique, un tableau est une structure de données représentant une séquence finie d'éléments auxquels on peut accéder efficacement par leur position, ou indice, dans la séquence. C'est un type de conteneur que l'on retrouve dans un grand nombre de langages de programmation. Dans les langages à typage statique (comme C, Java et OCaml), tous les éléments d’un tableau doivent être du même type. Certains langages à typage dynamique (tels APL et Python) permettent des tableaux hétérogènes.
Search data structureIn computer science, a search data structure is any data structure that allows the efficient retrieval of specific items from a set of items, such as a specific record from a database. The simplest, most general, and least efficient search structure is merely an unordered sequential list of all the items. Locating the desired item in such a list, by the linear search method, inevitably requires a number of operations proportional to the number n of items, in the worst case as well as in the average case.
Cyclic orderIn mathematics, a cyclic order is a way to arrange a set of objects in a circle. Unlike most structures in order theory, a cyclic order is not modeled as a binary relation, such as "a < b". One does not say that east is "more clockwise" than west. Instead, a cyclic order is defined as a ternary relation [a, b, c], meaning "after a, one reaches b before c". For example, [June, October, February], but not [June, February, October], cf. picture. A ternary relation is called a cyclic order if it is cyclic, asymmetric, transitive, and connected.
Purely functional data structureIn computer science, a purely functional data structure is a data structure that can be directly implemented in a purely functional language. The main difference between an arbitrary data structure and a purely functional one is that the latter is (strongly) immutable. This restriction ensures the data structure possesses the advantages of immutable objects: (full) persistency, quick copy of objects, and thread safety. Efficient purely functional data structures may require the use of lazy evaluation and memoization.
Java collections frameworkThe Java collections framework is a set of classes and interfaces that implement commonly reusable collection data structures. Although referred to as a framework, it works in a manner of a library. The collections framework provides both interfaces that define various collections and classes that implement them. Collections and arrays are similar in that they both hold references to objects and they can be managed as a group. However, unlike arrays, Collections do not need to be assigned a certain capacity when instantiated.
Decision analysisDecision analysis (DA) is the discipline comprising the philosophy, methodology, and professional practice necessary to address important decisions in a formal manner. Decision analysis includes many procedures, methods, and tools for identifying, clearly representing, and formally assessing important aspects of a decision; for prescribing a recommended course of action by applying the maximum expected-utility axiom to a well-formed representation of the decision; and for translating the formal representation of a decision and its corresponding recommendation into insight for the decision maker, and other corporate and non-corporate stakeholders.
Algèbre des termesEn logique mathématique, l'algèbre des termes est la structure algébrique libre sur une signature. Si la signature ne contient qu'un symbole de fonction binaire f, alors l'algèbre des termes sur un ensemble de variables X est exactement le magma libre sur X. Si x, y, z sont des variables de X, cette algèbre des termes contient les éléments suivants : x, y, z, f(x, x), f(x, f(x, y)), f(f(f(y, f(x), f(z, z)), y, x), etc. Le problème de décision associé à l'algèbre des termes est décidable et non élémentaire.
AlgèbreL'algèbre (de l’arabe الجبر, al-jabr) est une branche des mathématiques qui permet d'exprimer les propriétés des opérations et le traitement des équations et aboutit à l'étude des structures algébriques. Selon l’époque et le niveau d’études considérés, elle peut être décrite comme : une arithmétique généralisée, étendant à différents objets ou grandeurs les opérations usuelles sur les nombres ; la théorie des équations et des polynômes ; depuis le début du , l’étude des structures algébriques (on parle d'algèbre générale ou abstraite).
Tribu (mathématiques)En mathématiques, une tribu ou σ-algèbre (lire sigma-algèbre) ou plus rarement corps de Borel sur un ensemble X est un ensemble non vide de parties de X, stable par passage au complémentaire et par union dénombrable (donc aussi par intersection dénombrable). Les tribus permettent de définir rigoureusement la notion d'ensemble mesurable. Progressivement formalisées pendant le premier tiers du , les tribus constituent le cadre dans lequel s'est développée la théorie de la mesure.