Résumé
Decision analysis (DA) is the discipline comprising the philosophy, methodology, and professional practice necessary to address important decisions in a formal manner. Decision analysis includes many procedures, methods, and tools for identifying, clearly representing, and formally assessing important aspects of a decision; for prescribing a recommended course of action by applying the maximum expected-utility axiom to a well-formed representation of the decision; and for translating the formal representation of a decision and its corresponding recommendation into insight for the decision maker, and other corporate and non-corporate stakeholders. In 1931, mathematical philosopher Frank Ramsey pioneered the idea of subjective probability as a representation of an individual’s beliefs or uncertainties. Then, in the 1940s, mathematician John von Neumann and economist Oskar Morgenstern developed an axiomatic basis for utility theory as a way of expressing an individual’s preferences over uncertain outcomes. (This is in contrast to social-choice theory, which addresses the problem of deriving group preferences from individual preferences.) Statistician Leonard Jimmie Savage then developed an alternate axiomatic framework for decision analysis in the early 1950s. The resulting expected-utility theory provides a complete axiomatic basis for decision making under uncertainty. Once these basic theoretical developments had been established, the methods of decision analysis were then further codified and popularized, becoming widely taught (e.g., in business schools and departments of industrial engineering). A brief and highly accessible introductory text was published in 1968 by decision theorist Howard Raiffa of the Harvard Business School. Subsequently, in 1976, Ralph Keeney and Howard Raiffa extended the basics of utility theory to provide a comprehensive methodology for handling decisions involving trade-offs between multiple objectives.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (16)
Diagramme d'influence
Un diagramme d'influence (DI) (également appelé schéma de pertinence, diagramme de décision ou réseau de décision) est une représentation graphique et mathématique compacte d'une situation de décision. Il s'agit d'une généralisation d'un réseau bayésien, dans lequel non seulement les problèmes d'inférence probabiliste, mais aussi les problèmes de prise de décision (ex : critère d'utilité maximale attendue) peuvent être modélisés et résolus.
Decision intelligence
Decision intelligence is an engineering discipline that augments data science with theory from social science, decision theory, and managerial science. Its application provides a framework for best practices in organizational decision-making and processes for applying machine learning at scale. The basic idea is that decisions are based on our understanding of how actions lead to outcomes. Decision intelligence is a discipline for analyzing this chain of cause and effect, and decision modeling is a visual language for representing these chains.
Arbre de décision
vignette| Arbre de décision Un arbre de décision est un outil d'aide à la décision représentant un ensemble de choix sous la forme graphique d'un arbre. Les différentes décisions possibles sont situées aux extrémités des branches (les « feuilles » de l'arbre), et sont atteintes en fonction de décisions prises à chaque étape. L'arbre de décision est un outil utilisé dans des domaines variés tels que la sécurité, la fouille de données, la médecine, etc. Il a l'avantage d'être lisible et rapide à exécuter.
Afficher plus