Efficacité (statistiques)En statistique, lefficacité est une mesure de la qualité d'un estimateur, d'une expérimentation ou d'un test statistique. Elle permet d'évaluer le nombre d'observations nécessaires pour atteindre un seuil : plus un estimateur est efficace, plus l'échantillon d'observations nécessaire pour atteindre un objectif de précision sera petit. Lefficacité relative de deux procédures est le rapport de leurs efficacités, bien que le concept soit plus utilisé pour le rapport de l'efficacité d'une procédure donnée et d'une procédure théorique optimale.
Test du rapport de vraisemblanceEn statistiques, le test du rapport de vraisemblance est un test statistique qui permet de tester un modèle paramétrique contraint contre un non contraint. Si on appelle le vecteur des paramètres estimés par la méthode du maximum de vraisemblance, on considère un test du type : contre On définit alors l'estimateur du maximum de vraisemblance et l'estimateur du maximum de vraisemblance sous .
Reconnaissance de l'écriture manuscriteLa reconnaissance de l’écriture manuscrite (en anglais, handwritten text recognition ou HTR) est un traitement informatique qui a pour but de traduire un texte écrit en un texte codé numériquement. Il faut distinguer deux reconnaissances distinctes, avec des problématiques et des solutions différentes : la reconnaissance en-ligne ; la reconnaissance hors-ligne. La reconnaissance de l’écriture manuscrite fait appel à la reconnaissance de forme, mais également au traitement automatique du langage naturel.
Credible intervalIn Bayesian statistics, a credible interval is an interval within which an unobserved parameter value falls with a particular probability. It is an interval in the domain of a posterior probability distribution or a predictive distribution. The generalisation to multivariate problems is the credible region. Credible intervals are analogous to confidence intervals and confidence regions in frequentist statistics, although they differ on a philosophical basis: Bayesian intervals treat their bounds as fixed and the estimated parameter as a random variable, whereas frequentist confidence intervals treat their bounds as random variables and the parameter as a fixed value.
Modèle statistiqueUn modèle statistique est une description mathématique approximative du mécanisme qui a généré les observations, que l'on suppose être un processus stochastique et non un processus déterministe. Il s’exprime généralement à l’aide d’une famille de distributions (ensemble de distributions) et d’hypothèses sur les variables aléatoires X1, . . ., Xn. Chaque membre de la famille est une approximation possible de F : l’inférence consiste donc à déterminer le membre qui s’accorde le mieux avec les données.
Loi de RayleighEn probabilités et en statistiques, la loi de Rayleigh, est une loi de probabilité à densité. Elle apparaît comme la norme d'un vecteur gaussien bi-dimensionnel dont les coordonnées sont indépendantes, centrées et de même variance. Cette loi de probabilité est baptisée d'après Lord Rayleigh. Typiquement, la distance D à laquelle une particule se trouve de son point de départ, après avoir effectué n pas d'une marche aléatoire symétrique dans le plan, suit approximativement une loi de Rayleigh de paramètre .
Posterior predictive distributionIn Bayesian statistics, the posterior predictive distribution is the distribution of possible unobserved values conditional on the observed values. Given a set of N i.i.d. observations , a new value will be drawn from a distribution that depends on a parameter , where is the parameter space. It may seem tempting to plug in a single best estimate for , but this ignores uncertainty about , and because a source of uncertainty is ignored, the predictive distribution will be too narrow.
Loi de probabilitéthumb|400px 3 répartitions.png En théorie des probabilités et en statistique, une loi de probabilité décrit le comportement aléatoire d'un phénomène dépendant du hasard. L'étude des phénomènes aléatoires a commencé avec l'étude des jeux de hasard. Jeux de dés, tirage de boules dans des urnes et jeu de pile ou face ont été des motivations pour comprendre et prévoir les expériences aléatoires. Ces premières approches sont des phénomènes discrets, c'est-à-dire dont le nombre de résultats possibles est fini ou infini dénombrable.
Inégalité de Gibbsvignette|Willard Gibbs. En théorie de l'information, l'inégalité de Gibbs, nommée en l'honneur de Willard illard Gibbs.Gibbs, porte sur l'entropie d'une distribution de probabilités. Elle sert à prouver de nombreux résultats en théorie de l'information. Soient deux distributions de probabilités et , alors Le cas d'égalité se produit si et seulement si pour tout . D'après l'inégalité de Jensen, puisque le logarithme est concave, Cela équivaut à et montre donc l'inégalité.
Conceptual modelA conceptual model is a representation of a system. It consists of concepts used to help people know, understand, or simulate a subject the model represents. In contrast, a physical model focuses on a physical object such as a toy model that may be assembled and made to work like the object it represents. The term may refer to models that are formed after a conceptualization or generalization process. Conceptual models are often abstractions of things in the real world, whether physical or social.