Méthode de la sécanteEn analyse numérique, la méthode de la sécante est un algorithme de recherche d'un zéro d'une fonction f. La méthode de la sécante est une méthode comparable à celle de Newton, où l'on remplace par On obtient la relation de récurrence : L'initialisation nécessite deux points x0 et x1, proches, si possible, de la solution recherchée. Il n'est pas nécessaire que x0 et x1 encadrent une racine de f. La méthode de la sécante peut aussi être vue comme une généralisation de la méthode de la fausse position, où les calculs sont itérés.
Algorithme de rechercheEn informatique, un algorithme de recherche est un type d'algorithme qui, pour un domaine, un problème de ce domaine et des critères donnés, retourne en résultat un ensemble de solutions répondant au problème. Supposons que l'ensemble de ses entrées soit divisible en sous-ensemble, par rapport à un critère donné, qui peut être, par exemple, une relation d'ordre. De façon générale, un tel algorithme vérifie un certain nombre de ces entrées et retourne en sortie une ou plusieurs des entrées visées.
Méthode de MullerEn mathématiques, la méthode de Muller est un algorithme de recherche d'un zéro d'une fonction qui est basé sur la méthode de la sécante mais qui utilise une approximation quadratique d'une partie de la fonction au lieu d'une approximation linéaire. Ceci offre une convergence plus rapide que la méthode de la sécante. Une particularité de cette méthode est que le candidat issu de la recherche peut devenir complexe. La méthode de la sécante définit une relation de récurrence basée sur l'interpolation linéaire entre deux points.
Group method of data handlingGroup method of data handling (GMDH) is a family of inductive algorithms for computer-based mathematical modeling of multi-parametric datasets that features fully automatic structural and parametric optimization of models. GMDH is used in such fields as data mining, knowledge discovery, prediction, complex systems modeling, optimization and pattern recognition. GMDH algorithms are characterized by inductive procedure that performs sorting-out of gradually complicated polynomial models and selecting the best solution by means of the external criterion.
DBSCANDBSCAN (density-based spatial clustering of applications with noise) est un algorithme de partitionnement de données proposé en 1996 par Martin Ester, Hans-Peter Kriegel, Jörg Sander et Xiaowei Xu. Il s'agit d'un algorithme fondé sur la densité dans la mesure qui s’appuie sur la densité estimée des clusters pour effectuer le partitionnement. thumb|400px|Les points A sont les points déjà dans le cluster. Les points B et C sont atteignables depuis A et appartiennent donc au même cluster.
Inférence bayésiennevignette|Illustration comparant les approches fréquentiste et bayésienne (Christophe Michel, 2018). L’inférence bayésienne est une méthode d'inférence statistique par laquelle on calcule les probabilités de diverses causes hypothétiques à partir de l'observation d'événements connus. Elle s'appuie principalement sur le théorème de Bayes. Le raisonnement bayésien construit, à partir d'observations, une probabilité de la cause d'un type d'événements.
Modèle de mélangeIn statistics, a mixture model is a probabilistic model for representing the presence of subpopulations within an overall population, without requiring that an observed data set should identify the sub-population to which an individual observation belongs. Formally a mixture model corresponds to the mixture distribution that represents the probability distribution of observations in the overall population.
Processus gaussienEn théorie des probabilités et en statistiques, un processus gaussien est un processus stochastique (une collection de variables aléatoires avec un index temporel ou spatial) de telle sorte que chaque collection finie de ces variables aléatoires suit une loi normale multidimensionnelle ; c'est-à-dire que chaque combinaison linéaire est normalement distribuée. La distribution d'un processus gaussien est la loi jointe de toutes ces variables aléatoires. Ses réalisations sont donc des fonctions avec un domaine continu.
Musical tuningIn music, there are two common meanings for tuning: Tuning practice, the act of tuning an instrument or voice. Tuning systems, the various systems of pitches used to tune an instrument, and their theoretical bases. Tuning is the process of adjusting the pitch of one or many tones from musical instruments to establish typical intervals between these tones. Tuning is usually based on a fixed reference, such as A = 440 Hz. The term "out of tune" refers to a pitch/tone that is either too high (sharp) or too low (flat) in relation to a given reference pitch.
Algorithme génétiqueLes algorithmes génétiques appartiennent à la famille des algorithmes évolutionnistes. Leur but est d'obtenir une solution approchée à un problème d'optimisation, lorsqu'il n'existe pas de méthode exacte (ou que la solution est inconnue) pour le résoudre en un temps raisonnable. Les algorithmes génétiques utilisent la notion de sélection naturelle et l'appliquent à une population de solutions potentielles au problème donné.