Automatic Speech and Speaker Recognition: Large Margin and Kernel Methods
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Speech recognition-based applications upon the advancements in artificial intelligence play an essential role to transform most aspects of modern life. However, speech recognition in real-life conditions (e.g., in the presence of overlapping speech, varyin ...
Many pathologies cause impairments in the speech production mechanism resulting in reduced speech intelligibility and communicative ability. To assist the clinical diagnosis, treatment and management of speech disorders, automatic pathological speech asses ...
Atypical aspects in speech concern speech that deviates from what is commonly considered normal or healthy. In this thesis, we propose novel methods for detection and analysis of these aspects, e.g. to monitor the temporary state of a speaker, diseases tha ...
Speech signal conveys several kinds of information such as a message, speaker identity, emotional state of the speaker and social state of the speaker. Automatic speech assessment is a broad area that refers to using automatic methods to predict human judg ...
In hidden Markov model (HMM) based automatic speech recognition (ASR) system, modeling the statistical relationship between the acoustic speech signal and the HMM states that represent linguistically motivated subword units such as phonemes is a crucial st ...
Recent breakthroughs in deep learning often rely on representation learning and knowledge transfer. In recent years, unsupervised and self-supervised techniques for learning speech representation were developed to foster automatic speech recognition. Up to ...
EUROPEAN ASSOC SIGNAL SPEECH & IMAGE PROCESSING-EURASIP2021
Although current trends in speech processing consider deep learning through data-driven technologies, many potential applications exhibit lack of training or development data. Therefore, considerably light signal processing techniques are still of interest ...
Advances in Automatic Speech Recognition (ASR) over the last decade opened new areas of speech-based automation such as in Air-Traffic Control (ATC) environments. Currently, voice communication and Controller Pilot Data Link Communications are the only way ...
Recognising dysarthric speech is a challenging problem as it differs in many aspects from typical speech, such as speaking rate and pronunciation. In the literature the focus so far has largely been on handling these variabilities in the framework of HMM/G ...
Children speech recognition based on short-term spectral features is a challenging task. One of the reasons is that children speech has high fundamental frequency that is comparable to formant frequency values. Furthermore, as children grow, their vocal ap ...