Vision par ordinateurLa vision par ordinateur est un domaine scientifique et une branche de l’intelligence artificielle qui traite de la façon dont les ordinateurs peuvent acquérir une compréhension de haut niveau à partir d's ou de vidéos numériques. Du point de vue de l'ingénierie, il cherche à comprendre et à automatiser les tâches que le système visuel humain peut effectuer. Les tâches de vision par ordinateur comprennent des procédés pour acquérir, traiter, et « comprendre » des images numériques, et extraire des données afin de produire des informations numériques ou symboliques, par ex.
Psychologie cognitiveLa psychologie cognitive, ou psychologie de la connaissance, étudie les grandes fonctions psychologiques de l'être humain que sont la mémoire, le langage, l'intelligence, le raisonnement, la résolution de problèmes, la perception, l'attention et, , les émotions, inhérentes à la psychologie cognitive. La psychologie cognitive est l'étude de l'ensemble des états mentaux et l'ensemble des processus psychiques, en résumé : l'étude des activités mentales, qui fournissent à l'homme une représentation interne, une analyse de données externes, et ce, à des fins de prise de décisions et/ou d'actions.
Modèle de fondationUn modèle de fondation est un modèle d'intelligence artificielle de grande taille, entraîné sur une grande quantité de données non étiquetées (généralement par apprentissage auto-supervisé ). Le modèle résultant peut être adapté à un large éventail de tâches en aval (downstream tasks en anglais). Depuis leur introduction en 2018, les modèles de fondation ont induit une transformation majeure dans la manière de construire les systèmes d'IA. Les premiers modèles de fondation étaient de grands modèles de langage pré-entraînés, notamment BERT et GPT-3.
Capteur photographiqueUn capteur photographique est un composant électronique photosensible servant à convertir un rayonnement électromagnétique (UV, visible ou IR) en un signal électrique analogique. Ce signal est ensuite amplifié, puis numérisé par un convertisseur analogique-numérique et enfin traité pour obtenir une . Le capteur est donc le composant de base des appareils photo et des caméras numériques, l'équivalent du film (ou pellicule) en photographie argentique.
Apprentissage profondL'apprentissage profond ou apprentissage en profondeur (en anglais : deep learning, deep structured learning, hierarchical learning) est un sous-domaine de l’intelligence artificielle qui utilise des réseaux neuronaux pour résoudre des tâches complexes grâce à des architectures articulées de différentes transformations non linéaires. Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du signal sonore ou visuel et notamment de la reconnaissance faciale, de la reconnaissance vocale, de la vision par ordinateur, du traitement automatisé du langage.
Transformeur génératif pré-entraînédroite|vignette| Architecture du modèle GPT Le transformeur génératif pré-entraîné (ou GPT, de l’anglais generative pre-trained transformer) est une famille de modèles de langage généralement formée sur un grand corpus de données textuelles pour générer un texte de type humain. Il est construit en utilisant plusieurs blocs de l'architecture du transformeur. Ils peuvent être affinés pour diverses tâches de traitement du langage naturel telles que la génération de texte, la traduction de langue et la classification de texte.
VidéoprojecteurUn vidéoprojecteur désigne un appareil de projection électronique conçu pour afficher sur un écran séparé ou sur une surface murale blanche, une source vidéo dite vidéogramme ou de type informatique. On associe parfois le terme vidéoprojection avec la notion « frontale » pour le distinguer de la rétroprojection. Le « rétroprojecteur » désigne dans ce cas un téléviseur ou un moniteur vidéo, équipé d'un vidéoprojecteur interne (en anglais « Rear-projection television »), lequel projette l'image sur un écran de verre dépoli, par l'intermédiaire d'une optique ou miroir.
Linguistique cognitiveEn linguistique et en sciences cognitives, la linguistique cognitive est un courant linguistique qui estime que la création, l'apprentissage et l'usage du langage trouvent leur meilleure explication par référence à la cognition humaine en général. D'un point de vue idéologique, ce courant de recherche s'inscrit en opposition avec la linguistique structuraliste. C'est le linguiste américain George Lakoff, ancien adepte de Chomsky, qui a favorisé le développement du courant de recherche de la « linguistique cognitive » au cours des années 1970-1980 aux États-Unis.
Propriété de Markovvignette|Exemple de processus stochastique vérifiant la propriété de Markov: un mouvement Brownien (ici représenté en 3D) d'une particule dont la position à un instant t+1 ne dépend que de la position précédente à l'instant t. En probabilité, un processus stochastique vérifie la propriété de Markov si et seulement si la distribution conditionnelle de probabilité des états futurs, étant donnés les états passés et l'état présent, ne dépend en fait que de l'état présent et non pas des états passés (absence de « mémoire »).
Chaîne de Markovvignette|Exemple élémentaire de chaîne de Markov, à deux états A et E. Les flèches indiquent les probabilités de transition d'un état à un autre. En mathématiques, une chaîne de Markov est un processus de Markov à temps discret, ou à temps continu et à espace d'états discret. Un processus de Markov est un processus stochastique possédant la propriété de Markov : l'information utile pour la prédiction du futur est entièrement contenue dans l'état présent du processus et n'est pas dépendante des états antérieurs (le système n'a pas de « mémoire »).