Résumé
vignette|Exemple élémentaire de chaîne de Markov, à deux états A et E. Les flèches indiquent les probabilités de transition d'un état à un autre. En mathématiques, une chaîne de Markov est un processus de Markov à temps discret, ou à temps continu et à espace d'états discret. Un processus de Markov est un processus stochastique possédant la propriété de Markov : l'information utile pour la prédiction du futur est entièrement contenue dans l'état présent du processus et n'est pas dépendante des états antérieurs (le système n'a pas de « mémoire »). Les processus de Markov portent le nom de leur inventeur, Andreï Markov. Un processus de Markov à temps discret est une séquence de variables aléatoires à valeurs dans l’espace des états, qu'on notera dans la suite. La valeur est l'état du processus à l'instant Les applications où l'espace d'états est fini ou dénombrable sont innombrables : on parle alors de chaîne de Markov ou de chaînes de Markov à espace d'états discret. Les propriétés essentielles des processus de Markov généraux, par exemple les propriétés de récurrence et d'ergodicité, s'énoncent ou se démontrent plus simplement dans le cas des chaînes de Markov à espace d'états discret. Cet article concerne précisément les chaînes de Markov à espace d'états discret. Andreï Markov a publié les premiers résultats sur les chaînes de Markov à espace d'états fini en 1906. Une généralisation à un espace d'états infini dénombrable a été publiée par Kolmogorov en 1936. Les processus de Markov sont liés au mouvement brownien et à l'hypothèse ergodique, deux sujets de physique statistique qui ont été très importants au début du . Propriété de Markov C'est la propriété caractéristique d'une chaîne de Markov : la prédiction du futur à partir du présent n'est pas rendue plus précise par des éléments d'information supplémentaires concernant le passé, car toute l'information utile pour la prédiction du futur est contenue dans l'état présent du processus.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.