Publication

Volterra Series for Analyzing MLP based Phoneme Posterior Probability Estimator

Hynek Hermansky, Joel Praveen Pinto
2009
Article de conférence
Résumé

We present a framework to apply Volterra series to analyze multilayered perceptrons trained to estimate the posterior probabilities of phonemes in automatic speech recognition. The identified Volterra kernels reveal the spectro-temporal patterns that are learned by the trained system for each phoneme. To demonstrate the applicability of Volterra series, we analyze a multilayered perceptron trained using Mel filter bank energy features and analyze its first order Volterra kernels.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.