Modèle génératifvignette|Schéma représentant la différence entre un modèle discriminatif et un modèle génératif. En classement automatique un modèle génératif est un modèle statistique défini par opposition à un modèle discriminatif. Étant donné une variable X à laquelle il doit associer une autre variable Y, le modèle génératif cherchera à décrire la probabilité conditionnelle ainsi que la probabilité puis d'utiliser la formule de Bayes pour calculer la probabilité .
Hyperparameter optimizationIn machine learning, hyperparameter optimization or tuning is the problem of choosing a set of optimal hyperparameters for a learning algorithm. A hyperparameter is a parameter whose value is used to control the learning process. By contrast, the values of other parameters (typically node weights) are learned. The same kind of machine learning model can require different constraints, weights or learning rates to generalize different data patterns.
Précision et rappelvignette|350px|Précision et rappel (« recall »). La précision compte la proportion d'items pertinents parmi les items sélectionnés alors que le rappel compte la proportion d'items pertinents sélectionnés parmi tous les items pertinents sélectionnables. Dans les domaines de la reconnaissance de formes, de la recherche d'information et de la classification automatique, la précision (ou valeur prédictive positive) est la proportion des items pertinents parmi l'ensemble des items proposés ; le rappel (ou sensibilité) est la proportion des items pertinents proposés parmi l'ensemble des items pertinents.
Apprentissage ensemblisteIn statistics and machine learning, ensemble methods use multiple learning algorithms to obtain better predictive performance than could be obtained from any of the constituent learning algorithms alone. Unlike a statistical ensemble in statistical mechanics, which is usually infinite, a machine learning ensemble consists of only a concrete finite set of alternative models, but typically allows for much more flexible structure to exist among those alternatives.
Réseaux antagonistes génératifsEn intelligence artificielle, les réseaux antagonistes génératifs (RAG) parfois aussi appelés réseaux adverses génératifs (en anglais generative adversarial networks ou GANs) sont une classe d'algorithmes d'apprentissage non supervisé. Ces algorithmes ont été introduits par . Ils permettent de générer des images avec un fort degré de réalisme. Un GAN est un modèle génératif où deux réseaux sont placés en compétition dans un scénario de théorie des jeux. Le premier réseau est le générateur, il génère un échantillon (ex.
Recherche d'image par le contenuLa recherche d'image par le contenu (en anglais : content-based image retrieval ou CBIR) est une technique permettant de rechercher des images à partir de ses caractéristiques visuelles, c'est-à-dire induite de leurs pixels. Les images sont classiquement décrites comme rendant compte de leur texture, couleur, forme. Un cas typique d'utilisation est la recherche par l'exemple où l'on souhaite retrouver des images visuellement similaires à un exemple donné en requête.
Fouille de textesLa fouille de textes ou « l'extraction de connaissances » dans les textes est une spécialisation de la fouille de données et fait partie du domaine de l'intelligence artificielle. Cette technique est souvent désignée sous l'anglicisme text mining. Elle désigne un ensemble de traitements informatiques consistant à extraire des connaissances selon un critère de nouveauté ou de similarité dans des textes produits par des humains pour des humains.
Exactitude et précisionvignette|Schéma de l'exactitude et la précision appliquée à des lancers de fléchettes. Dans la mesure d'un ensemble, l'exactitude est la proximité des mesures à une valeur spécifique, tandis que la précision est la proximité des mesures les unes par rapport aux autres. L'exactitude a deux définitions : Plus communément, il s'agit d'une description des erreurs systématiques, une mesure du biais statistique ; une faible précision entraîne une différence entre un résultat et une valeur « vraie ».
Estimation par noyauEn statistique, l’estimation par noyau (ou encore méthode de Parzen-Rosenblatt ; en anglais, kernel density estimation ou KDE) est une méthode non-paramétrique d’estimation de la densité de probabilité d’une variable aléatoire. Elle se base sur un échantillon d’une population statistique et permet d’estimer la densité en tout point du support. En ce sens, cette méthode généralise astucieusement la méthode d’estimation par un histogramme. Si est un échantillon i.i.d.
Educational researchEducational research refers to the systematic collection and analysis of data related to the field of education. Research may involve a variety of methods and various aspects of education including student learning, interaction, teaching methods, teacher training, and classroom dynamics. Educational researchers generally agree that research should be rigorous and systematic. However, there is less agreement about specific standards, criteria and research procedures. As a result, the value and quality of educational research has been questioned.