Multiscale Modelling of Irradiation Induced Effects on the Plasticity of Fe and Fe-Cr
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Solidification is a phase transformation of utmost importance in material science, for it largely controls materials' microstructure on which a wide range of mechanical properties depends. Almost every human artifact undergoes a transformation that leads t ...
It has been discovered quite recently that Icosahedral Short-Range Order (ISRO) of atoms in the liquid phase of metallic alloys surrounding some trace elements added to the melt can influence both the nucleation and growth of the primary phase. In this wor ...
Solute accelerated cross-slip of pyramidal < c + a > screw dislocations has recently been recognized as a crucial mechanism in enhancing the ductility of solid-solution Mg alloys. In pure Mg, cross-slip is ineffective owing to the energy difference between ...
Under common processing conditions, both dilute and complex concentrated alloys are often realized as random alloys, with no correlation in the occupancy of lattice sites by the constituent atom types. The current thesis primary addresses two problems in r ...
Samples from an ultrafine-grained Cu-4.5vol.%Al2O3 nanocomposite rod fabricated by powder compact extrusion were annealed at 400 and 700 degrees C for 15 min respectively, and their microstructure and mechanical properties were investigated. It shows that ...
Atomistic simulations are a powerful complement to experimental probes for understanding the nanoscale processes associated with the effects of hydrogen (H) on plasticity and fracture that are the underlying causes of hydrogen embrittlement (HE). Current e ...
The yield strength of random metal alloys, i.e. alloys with random occupation of the crystalline lattice sites by the elemental constituent atoms all considered as solutes, is primarily understood as controlled by solute/dislocation interactions. Solute-so ...
Yielding in pure BCC metals and dilute substitutional alloys occurs by double-kink nucleation and propagation along screw dislocations. At low temperatures, the yield stress is controlled by double-kink nucleation. Here, an analytical statistical model is ...
Dislocation motion through a random alloy is impeded by its interactions with the compositional fluctuations intrinsic to the alloy, leading to strengthening. A recent theory predicts the strengthening as a function of the solute-dislocation interaction en ...
Large scale 3D atomistic simulations are performed to study the interaction between a curved dislocation with a dominant screw character and a Coherent Twin Boundary (CTB). Three FCC metals (Al, Cu and Ni) are addressed using 6 embedded-atom method (EAM) p ...