Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
We propose a crossover operator that works with genetic programming trees and is approximately geometric crossover in the semantic space. By defining semantic as program's evaluation profile with respect to a set of fitness cases and constraining to a specific class of metric-based fitness functions, we cause the fitness landscape in the semantic space to have perfect fitness-distance correlation. The proposed approximately geometric semantic crossover exploits this property of the semantic fitness landscape by an appropriate sampling. We demonstrate also how the proposed method may be conveniently combined with hill climbing. We discuss the properties of the methods, and describe an extensive computational experiment concerning logical function synthesis and symbolic regression.
Rubén Laplaza Solanas, Anne-Clémence Corminboeuf, Puck Elisabeth van Gerwen, Alexandre Alain Schöpfer, Simone Gallarati
François Maréchal, Julia Granacher