Leveraging User-Generated Content for Information Discovery on the Web
Publications associées (192)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Graph learning is often a necessary step in processing or representing structured data, when the underlying graph is not given explicitly. Graph learning is generally performed centrally with a full knowledge of the graph signals, namely the data that live ...
In several machine learning settings, the data of interest are well described by graphs. Examples include data pertaining to transportation networks or social networks. Further, biological data, such as proteins or molecules, lend themselves well to graph- ...
Information retrieval (IR) systems such as search engines are important for people to find what they need among the tremendous amount of data available in their organization or on the Internet. These IR systems enable users to search in a large data collec ...
Graph neural networks take node features and graph structure as input to build representations for nodes and graphs. While there are a lot of focus on GNN models, understanding the impact of node features and graph structure to GNN performance has received ...
Personalized ranking methods are at the core of many systems that learn to produce recommendations from user feedbacks. Their primary objective is to identify relevant items from very large vocabularies and to assist users in discovering new content. These ...
Computing the count of distinct elements in large data sets is a common task but naive approaches are memory-expensive. The HyperLogLog (HLL) algorithm (Flajolet et al., 2007) estimates a data set's cardinality while using significantly less memory than a ...
Dimension is a fundamental property of objects and the space in which they are embedded. Yet ideal notions of dimension, as in Euclidean spaces, do not always translate to physical spaces, which can be constrained by boundaries and distorted by inhomogenei ...
We present Deep MinCut (DMC), an unsupervised approach to learn node embeddings for graph -structured data. It derives node representations based on their membership in communities. As such, the embeddings directly provide insights into the graph structure ...
Digital data is a gold mine for modern journalism. However, datasets which interest journalists are extremely heterogeneous, ranging from highly structured (relational databases), semi-structured (JSON, XML, HTML), graphs (e.g., RDF), and text. Journalists ...
Community structure in graph-modeled data appears in a range of disciplines that comprise network science. Its importance relies on the influence it bears on other properties of graphs such as resilience, or prediction of missing connections. Nevertheless, ...