Publication

Graph Representation Learning with Optimal Transport: Analysis and Applications

Effrosyni Simou
2022
Thèse EPFL
Résumé

In several machine learning settings, the data of interest are well described by graphs. Examples include data pertaining to transportation networks or social networks. Further, biological data, such as proteins or molecules, lend themselves well to graph-structured descriptions. In such settings, it is desirable to design representation learning algorithms that can take into account the information captured by the underlying structure. This thesis focuses on providing new methods to ingrain geometrical information in end-to-end deep learning architectures for graphs through the use of elements from Optimal Transport theory.First, we consider the setting where the data can be described by a fixed graph. In this setting, each datapoint corresponds to a node of the graph and the edges among nodes signify their pairwise relations. We propose an autoencoder architecture that consists of a linear layer in the encoder and a novel Wasserstein barycentric layer at the decoder. Our proposed barycentric layer takes into account the underlying geometry through the diffusion distance of the graph and provides a way to obtain structure-aware, non-linear interpolations, which lead to directly interpretable node embeddings that are stable to perturbations of the graph structure. Further, the embeddings obtained with our proposed autoencoder achieve competitive or superior results compared to state-of-the-art methods in node classification tasks.Second, we consider the setting where the data consist of multiple graphs. In that setting, the graphs can be of varying size and, therefore, a global pooling operation is needed in order to obtain representations of fixed size and enable end-to-end learning with deep networks. We propose a global pooling operation that optimally preserves the statistical properties of the representations. In order to do so, we take into account the geometry of the representation space and introduce a global pooling layer that minimizes the Wasserstein distance between a graph representation and its pooled counterpart, of fixed size. This is achieved by performing a Wasserstein gradient flow with respect to the pooled representation. Our proposed method demonstrates promising results in the task of graph classification.Overall, in this thesis we provide new methods for incorporating geometrical information in end-to-end deep learning architectures for graph structured data. We believe that our proposals will contribute to the development of algorithms that learn meaningful representations and that take fully into account the geometry of the data under consideration.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (36)
Théorie des graphes
vignette|Un tracé de graphe. La théorie des graphes est la discipline mathématique et informatique qui étudie les graphes, lesquels sont des modèles abstraits de dessins de réseaux reliant des objets. Ces modèles sont constitués par la donnée de sommets (aussi appelés nœuds ou points, en référence aux polyèdres), et d'arêtes (aussi appelées liens ou lignes) entre ces sommets ; ces arêtes sont parfois non symétriques (les graphes sont alors dits orientés) et sont alors appelées des flèches ou des arcs.
Graphe (type abstrait)
thumb|upright=1.3|Un graphe orienté, dont les arcs et certains sommets sont « valués » par des couleurs. En informatique, et plus particulièrement en génie logiciel, le type abstrait graphe est la spécification formelle des données qui définissent l'objet mathématique graphe et de l'ensemble des opérations qu'on peut effectuer sur elles. On qualifie d'« abstrait » ce type de données car il correspond à un cahier des charges qu'une structure de données concrète doit ensuite implémenter.
Apprentissage de représentations
En apprentissage automatique, l'apprentissage des caractéristiques ou apprentissage des représentations est un ensemble de techniques qui permet à un système de découvrir automatiquement les représentations nécessaires à la détection ou à la classification des caractéristiques à partir de données brutes. Cela remplace l'ingénierie manuelle des fonctionnalités et permet à une machine d'apprendre les fonctionnalités et de les utiliser pour effectuer une tâche spécifique.
Afficher plus
Publications associées (109)

Towards improving full-length ribosome density prediction by bridging sequence and graph-based representations

Pierre Vandergheynst, Felix Naef, Cédric Gobet, Francesco Craighero, Mohan Vamsi Nallapareddy

Translation elongation plays an important role in regulating protein concentrations in the cell, and dysregulation of this process has been linked to several human diseases. In this study, we use data from ribo-seq experiments to model ribosome dwell times ...
2024

Graph Exploration for Effective Multiagent Q-Learning

Ali H. Sayed, Ainur Zhaikhan

This article proposes an exploration technique for multiagent reinforcement learning (MARL) with graph-based communication among agents. We assume that the individual rewards received by the agents are independent of the actions by the other agents, while ...
Ieee-Inst Electrical Electronics Engineers Inc2024

Equivariant Neural Architectures for Representing and Generating Graphs

Clément Arthur Yvon Vignac

Graph machine learning offers a powerful framework with natural applications in scientific fields such as chemistry, biology and material sciences. By representing data as a graph, we encode the prior knowledge that the data is composed of a set of entitie ...
EPFL2023
Afficher plus
MOOCs associés (23)
Analyse I
Le contenu de ce cours correspond à celui du cours d'Analyse I, comme il est enseigné pour les étudiantes et les étudiants de l'EPFL pendant leur premier semestre. Chaque chapitre du cours correspond
Analyse I (partie 1) : Prélude, notions de base, les nombres réels
Concepts de base de l'analyse réelle et introduction aux nombres réels.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.