Short-rate modelA short-rate model, in the context of interest rate derivatives, is a mathematical model that describes the future evolution of interest rates by describing the future evolution of the short rate, usually written . Under a short rate model, the stochastic state variable is taken to be the instantaneous spot rate. The short rate, , then, is the (continuously compounded, annualized) interest rate at which an entity can borrow money for an infinitesimally short period of time from time .
Vasicek modelIn finance, the Vasicek model is a mathematical model describing the evolution of interest rates. It is a type of one-factor short-rate model as it describes interest rate movements as driven by only one source of market risk. The model can be used in the valuation of interest rate derivatives, and has also been adapted for credit markets. It was introduced in 1977 by Oldřich Vašíček, and can be also seen as a stochastic investment model.
Courbe des tauxUne courbe des taux (en anglais : Yield Curve) est, en finance, la représentation graphique de la fonction mathématique du taux d'intérêt effectif à un instant donné d'un zéro-coupon en fonction de sa maturité d'une même classe d'instruments fongibles exprimés dans une même devise, comme les swaps contre IBOR. Par extension, on l'emploie pour des instruments non fongibles mais néanmoins fortement comparables entre eux, comme les emprunts à taux fixe d'un même État.
Volatility smileVolatility smiles are implied volatility patterns that arise in pricing financial options. It is a parameter (implied volatility) that is needed to be modified for the Black–Scholes formula to fit market prices. In particular for a given expiration, options whose strike price differs substantially from the underlying asset's price command higher prices (and thus implied volatilities) than what is suggested by standard option pricing models. These options are said to be either deep in-the-money or out-of-the-money.
Local volatilityA local volatility model, in mathematical finance and financial engineering, is an option pricing model that treats volatility as a function of both the current asset level and of time . As such, it is a generalisation of the Black–Scholes model, where the volatility is a constant (i.e. a trivial function of and ). Local volatility models are often compared with stochastic volatility models, where the instantaneous volatility is not just a function of the asset level but depends also on a new "global" randomness coming from an additional random component.
Implied volatilityIn financial mathematics, the implied volatility (IV) of an option contract is that value of the volatility of the underlying instrument which, when input in an option pricing model (such as Black–Scholes), will return a theoretical value equal to the current market price of said option. A non-option financial instrument that has embedded optionality, such as an interest rate cap, can also have an implied volatility. Implied volatility, a forward-looking and subjective measure, differs from historical volatility because the latter is calculated from known past returns of a security.
Heston modelIn finance, the Heston model, named after Steven L. Heston, is a mathematical model that describes the evolution of the volatility of an underlying asset. It is a stochastic volatility model: such a model assumes that the volatility of the asset is not constant, nor even deterministic, but follows a random process. The basic Heston model assumes that St, the price of the asset, is determined by a stochastic process, where , the instantaneous variance, is given by a Feller square-root or CIR process, and are Wiener processes (i.
Taux d'intérêtLe taux d'intérêt d'un prêt ou d'un emprunt fixe la rémunération du capital prêté (exprimée en pourcentage du montant prêté) versée par l'emprunteur au prêteur. Le taux et les modalités de versement de cette rémunération sont fixés lors de la conclusion du contrat de prêt. Ce pourcentage tient compte de la durée du prêt, de la nature des risques encourus et des garanties offertes par le prêteur. Les taux d'intérêt sont utilisés dans de multiples domaines, des instruments financiers jusqu'aux produits d'épargne (compte d'épargne), en passant par les obligations.
Mathématiques financièresLes mathématiques financières (aussi nommées finance quantitative) sont une branche des mathématiques appliquées ayant pour but la modélisation, la quantification et la compréhension des phénomènes régissant les opérations financières d'une certaine durée (emprunts et placements / investissements) et notamment les marchés financiers. Elles font jouer le facteur temps et utilisent principalement des outils issus de l'actualisation, de la théorie des probabilités, du calcul stochastique, des statistiques et du calcul différentiel.
Analyse quantitative (économie)En finance, l'analyse quantitative est l'utilisation de mathématiques financières, souvent dérivées des probabilités, pour mettre au point et utiliser des modèles permettant aux gestionnaires de fonds et autres spécialistes financiers de s'attaquer à deux problèmes : mieux évaluer la valeur des actifs financiers, et surtout leurs dérivés. Ces dérivés peuvent être des produits comme les warrants, les certificats ou tout autre type de dérivé ou d'option (contrats Futures sur matières premières, indices, etc.