Résumé
Les mathématiques financières (aussi nommées finance quantitative) sont une branche des mathématiques appliquées ayant pour but la modélisation, la quantification et la compréhension des phénomènes régissant les opérations financières d'une certaine durée (emprunts et placements / investissements) et notamment les marchés financiers. Elles font jouer le facteur temps et utilisent principalement des outils issus de l'actualisation, de la théorie des probabilités, du calcul stochastique, des statistiques et du calcul différentiel. L'actualisation et l'utilisation des intérêts composés et des probabilités remontent à plusieurs siècles. Cela dit Louis Bachelier, par sa thèse intitulée Théorie de la spéculation en 1900, est considéré comme le fondateur des mathématiques financières appliquées aux marchés. La théorie moderne des marchés financiers remonte au MEDAF et à l'étude du problème d'évaluation des options et autres contrats financiers dérivés dans les années 1950-1970. L'observation empirique du cours des actifs financiers montre que ceux-ci ne sont pas déterminés de façon certaine par leur histoire. En effet, les nombreuses opérations d'achat ou de vente ne sont pas prévisibles, elles font souvent intervenir des éléments nouveaux. Le cours de l'actif financier est donc souvent représenté par un processus stochastique. Benoit Mandelbrot a établi par des considérations statistiques qu'un modèle aléatoire ordinaire, par exemple gaussien, ne convient pas. L'aléa reste cependant souvent modélisé par un mouvement brownien, bien que des modèles plus élaborés (par exemple, le modèle de Bates) tiennent compte de la non-continuité des cours (présence de sauts (gaps) dus à des chocs boursiers), ou de la non-symétrie des mouvements à la baisse et à la hausse. L'une des hypothèses fondamentales des modèles usuels est qu'il n'existe aucune stratégie financière permettant, pour un coût initial nul, d'acquérir une richesse certaine dans une date future. Cette hypothèse est appelée absence d'opportunités d'arbitrage.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.