Publication

Study of Diluted Magnetic Semiconductors

Zlatko Mickovic
2010
Thèse EPFL
Résumé

Diluted magnetic semiconductors (DMS), semiconductors in which a fraction of non-magnetic sites have been replaced with their magnetic counterparts, have been in the limelight of the scientific community since the turn of the 21st century. The interest in these materials is spurred from their application in the spin electronics, the developing technology based on the usage of the fundamental property of every electron - its spin. Namely, diluted magnetic semiconductors have large spin-dependent properties that can be amplified in the presence of a magnetic field, thereby having the potential of achieving the external control of spin, which is the final goal of spintronics. The Achilles heel of diluted magnetic semiconductors is the material's quality. The tendency of magnetic ions distributed in a non-magnetic matrix is to cluster and form magnetic islands leaving non-magnetic regions in the material with macroscopic properties of the sample completely different from originally envisaged. The goal of this thesis was to develop novel synthesis methods to produce homogenously doped ZnO with transition metal ions (TM = Mn, Ni, Co) and to check what magnetic transition temperatures (Tc) could be achieved in such conditions. The idea was to use homogeneous precursors synthesized at low temperatures. A synthesis method was elaborated using transition metal doped nitrates as precursors. The materials were decomposed in moderately oxidizing conditions of NO2 formed during the synthesis. In the case of Mn as transition metal ion even this oxidation was strong enough to create a small quantity of Mn4+ and consequently, to form a small amount of parasitic magnetic phase ZnMnO3 within the Zn1-xMnxO matrix. Excellent material was produced by using a 2-step synthesis for DMSs based on inorganic precursor decomposition. The precursor was TM-doped hydrozincite, a zinc hydroxy carbonate salt, which is obtained by the oxidation of urea by Zn and Mn nitrates. This precursor undergoes a single-step decomposition to produce TM-doped ZnO at low temperatures. The detailed characterization of Mn-doped ZnO produced by this novel process demonstrates the high purity of its product. It is also compatible with Si-based device fabrication, because of the low-temperature nature of the process. In this case the formation of zinc manganate impurities was avoided as the oxidation state of Mn cations is well controlled. ZnO doped with up to 1.8 % of Mn has been prepared, and a ferromagnetic signal has been observed below 40 K. Unfortunately, this is well below the desired room temperature ferromagnetism. The goal is further on to increase TC with additional chemical manipulations. Other TM dopants in hydrozincite precursor did not give satisfactory results . The case of Zn1-xCoxO revealed that a strong ferromagnetism with TC > 260 K can be achieved when the Co precipitates in the ZnO matrix and hence it is not intrinsic to the system. The case of Zn1-xNixO has showed that NiO inclusions can lead to superparamagnetism. Besides chemical methods, a large variety of experimental techniques were employed to characterize the materials, such as X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDXS), selected area diffraction pattern (SADP), electron energy loss spectroscopy (EELS), low and high-field electron spin resonance (ESR), DC and AC conductivity, AC susceptibility and Superconducting Quantum Interference Device (SQUID).

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (37)
Magnetic semiconductor
Magnetic semiconductors are semiconductor materials that exhibit both ferromagnetism (or a similar response) and useful semiconductor properties. If implemented in devices, these materials could provide a new type of control of conduction. Whereas traditional electronics are based on control of charge carriers (n- or p-type), practical magnetic semiconductors would also allow control of quantum spin state (up or down).
Température de Curie
La température de Curie (ou point de Curie) d'un matériau ferromagnétique ou ferrimagnétique est la température T à laquelle le matériau perd son aimantation permanente. Le matériau devient alors paramagnétique. Ce phénomène a été découvert par le physicien français Pierre Curie en 1895. L’aimantation permanente est causée par l’alignement des moments magnétiques. La susceptibilité magnétique au-dessus de la température de Curie peut alors être calculée à partir de la loi de Curie-Weiss, qui dérive de la loi de Curie.
Ferrimagnétisme
vignette|Orientation des moments magnétiques dans deux sous réseaux A et B Le ferrimagnétisme est une propriété magnétique de certains corps solides. Dans un matériau ferrimagnétique, les moments magnétiques sont anti-parallèles mais d'amplitude différente. Il en résulte une aimantation spontanée du matériau. Il se distingue donc à la fois de l'antiferromagnétisme, pour lequel le moment magnétique résultant est nul, et du ferromagnétisme, pour lequel l'aimantation spontanée résulte au niveau microscopique d'un arrangement parallèle des moments magnétiques.
Afficher plus
Publications associées (90)

Magnetism of Single Surface Adsorbed Atoms Studied with Radio-Frequency STM

Clément Marie Soulard

This thesis investigates the magnetic properties of single atoms and molecules adsorbed on thin magnesium oxide decoupling layers, grown on a silver single crystal. To address these systems experimentally, we use a low temperature scanning tunneling micros ...
EPFL2024

High-rate, high-resolution single photon X-ray imaging: Medipix4, a large 4-side buttable pixel readout chip with high granularity and spectroscopic capabilities

Jean-Michel Sallese, Adil Koukab, Viros Sriskaran

The Medipix4 chip is the latest member in the Medipix/Timepix family of hybrid pixel detector chips aimed at high -rate spectroscopic X-ray imaging using high -Z materials. It can be tiled on all 4 sides making it ideal for constructing large -area detecto ...
Iop Publishing Ltd2024

Spin Textures in 2D Magnets

Lukas Powalla

The continuous reduction of the structural size in nanotechnology slowed down over the last decade, approaching the natural limit of single atoms as building blocks of matter. Therefore, intensive research is directed toward exploring new frontiers, in par ...
EPFL2023
Afficher plus
MOOCs associés (32)
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Applications
Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.