La température de Curie (ou point de Curie) d'un matériau ferromagnétique ou ferrimagnétique est la température T à laquelle le matériau perd son aimantation permanente. Le matériau devient alors paramagnétique. Ce phénomène a été découvert par le physicien français Pierre Curie en 1895. L’aimantation permanente est causée par l’alignement des moments magnétiques. La susceptibilité magnétique au-dessus de la température de Curie peut alors être calculée à partir de la loi de Curie-Weiss, qui dérive de la loi de Curie. Par analogie, on parle également de température de Curie pour un matériau ferroélectrique. Elle désigne alors la température à laquelle le matériau perd sa polarisation permanente. Cette température est habituellement marquée par un maximum de la constante diélectrique. De par leurs propres moments magnétiques orbital et de spin, les électrons, tout comme le noyau de l’atome, contribuent au moment magnétique total d'un atome. Le moment magnétique μ du noyau est toutefois négligeable par rapport à la contribution électronique, avec μ < μ (μ ~ et μ a le même ordre de grandeur que le magnéton de Bohr soit ~). Dans les matériaux ferromagnétiques, paramagnétiques, ferrimagnétiques et antiferromagnétiques, les moments magnétiques s'ordonnent, dû à la présence de l'interaction d'échange. L'agitation thermique entraine une hausse d’énergie pour les électrons, causant un désordre par mouvement brownien et la disparition de l'ordre magnétique. Les matériaux ferromagnétiques, paramagnétiques, ferrimagnétiques et antiferromagnétiques ont des moments magnétiques intrinsèques différents. C'est à une température de Curie spécifique qu’un matériau change de propriétés magnétiques. Par exemple, la transition de l’état antiferromagnétique à l’état paramagnétique (ou vice versa) se produit à la température de Néel TN qui est analogue à la température de Curie. Liste des différentes transitions de phases possibles : File:Diagram of Ferromagnetic Magnetic Moments.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (32)
PHYS-419: Solid state physics III
The aim of this course is to provide an introduction to the theory of a few remarkable phenomena of modern condensed matter physics ranging from the quantum Hall effects to superconductivity.
MSE-432: Introduction to magnetic materials in modern technologies
Interactive course addressing bulk and thin-film magnetic materials that provide application-specific functionalities in different modern technologies such as e.g. wind energy harvesting, electric art
MATH-486: Statistical mechanics and Gibbs measures
This course provides a rigorous introduction to the ideas, methods and results of classical statistical mechanics, with an emphasis on presenting the central tools for the probabilistic description of
Afficher plus
Concepts associés (28)
Ferrimagnétisme
vignette|Orientation des moments magnétiques dans deux sous réseaux A et B Le ferrimagnétisme est une propriété magnétique de certains corps solides. Dans un matériau ferrimagnétique, les moments magnétiques sont anti-parallèles mais d'amplitude différente. Il en résulte une aimantation spontanée du matériau. Il se distingue donc à la fois de l'antiferromagnétisme, pour lequel le moment magnétique résultant est nul, et du ferromagnétisme, pour lequel l'aimantation spontanée résulte au niveau microscopique d'un arrangement parallèle des moments magnétiques.
Ferromagnétisme
Le ferromagnétisme est le mécanisme fondamental par lequel certains matériaux (fer, cobalt, nickel...) sont attirés par des aimants ou forment des aimants permanents. On distingue en physique différents types de magnétismes. Le ferromagnétisme (qui inclut le ferrimagnétisme) se trouve être celui à l’origine des champs magnétiques les plus importants : c’est celui qui crée des forces suffisamment importantes pour être senties et qui est responsable du phénomène bien connu de magnétisme dans les aimants de la vie quotidienne.
Hystérésis
L'hystérésis (ou hystérèse), du grec grc (« après », « plus tard »), substantif féminin, est la propriété d'un système dont l'évolution ne suit pas le même chemin selon qu'une cause extérieure augmente ou diminue. Soit une grandeur cause notée C produisant une grandeur effet notée E. On dit qu'il y a hystérésis lorsque la courbe E = f(C) obtenue à la croissance de C ne se superpose pas avec la courbe E = f(C) obtenue à la décroissance de C.
Afficher plus
MOOCs associés (18)
Mécanique de Newton
Ce cours de Physique générale – mécanique fourni les outils permettant de maîtriser la mécanique newtonienne du point matériel.
Mécanique du Point Matériel
Ce cours de Physique générale – mécanique fourni les outils permettant de maîtriser la mécanique newtonienne du point matériel.
Mécanique du Solide Indéformable
Ce cours de Physique générale – mécanique fourni les outils permettant de maîtriser la mécanique newtonienne du point matériel.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.