Hypothèse calculatoireEn cryptographie, une hypothèse de difficulté calculatoire est une hypothèse qui sert à évaluer et à démontrer la robustesse des primitives cryptographiques. Dans certains cas, la sécurité est dite inconditionnelle si elle ne repose sur aucune hypothèse de difficulté calculatoire ; un exemple courant est la technique dite du masque jetable, où le masque est aussi grand que le message. Cependant, il est souvent impossible d'atteindre une forme de sécurité aussi forte ; dans de tels cas, les cryptographes doivent s'en remettre à une forme de sécurité dite « calculatoire ».
Preuve à divulgation nulle de connaissanceUne preuve à divulgation nulle de connaissance est une brique de base utilisée en cryptologie dans le cadre de l'authentification et de l'identification. Cette expression désigne un protocole sécurisé dans lequel une entité, nommée « fournisseur de preuve », prouve mathématiquement à une autre entité, le « vérificateur », qu'une proposition est vraie sans toutefois révéler d'autres informations que la véracité de la proposition. En pratique, ces schémas se présentent souvent sous la forme de protocoles de type « défi/réponse » (challenge-response).
Preuve de travailUn système de validation par preuve de travail (en anglais : proof of work, PoW) est, en informatique, un protocole permettant de repousser, sur un environnement client-serveur, des attaques par déni de service ou d'autres abus de service tels que les spams. Ce système de preuve de travail est utilisé dans des cadres beaucoup plus complexes, pour la validation des transactions de la blockchain de certaines crypto-monnaies comme le Bitcoin. Cette vérification par les mineurs de bitcoins est récompensée par l'émission de nouveaux bitcoins au bénéfice des vérificateurs.