**Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?**

Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur GraphSearch.

Publication# Graph-Constrained Group Testing

Résumé

Non-adaptive group testing involves grouping arbitrary subsets of $n$ items into different pools. Each pool is then tested and defective items are identified. A fundamental question involves minimizing the number of pools required to identify at most $d$ defective items. Motivated by applications in network tomography, sensor networks and infection propagation, a variation of group testing problems on graphs is formulated. Unlike conventional group testing problems, each group here must conform to the constraints imposed by a graph. For instance, items can be associated with vertices and each pool is any set of nodes that must be path connected. In this paper, a test is associated with a random walk. In this context, conventional group testing corresponds to the special case of a complete graph on $n$ vertices. For interesting classes of graphs a rather surprising result is obtained, namely, that the number of tests required to identify $d$ defective items is substantially similar to what required in conventional group testing problems, where no such constraints on pooling is imposed. Specifically, if $T(n)$ corresponds to the mixing time of the graph $G$, it is shown that with $m=O(d^2T^2(n)\log(n/d))$ non-adaptive tests, one can identify the defective items. Consequently, for the Erd\H{o}s-R'enyi random graph $G(n,p)$, as well as expander graphs with constant spectral gap, it follows that $m=O(d^2\log^3n)$ non-adaptive tests are sufficient to identify $d$ defective items. Next, a specific scenario is considered that arises in network tomography, for which it is shown that $m=O(d^3\log^3n)$ non-adaptive tests are sufficient to identify $d$ defective items. Noisy counterparts of the graph constrained group testing problem are considered, for which parallel results are developed.

Official source

Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Concepts associés

Chargement

Publications associées

Chargement

Concepts associés (14)

Marche aléatoire

En mathématiques, en économie et en physique théorique, une marche aléatoire est un modèle mathématique d'un système possédant une dynamique discrète composée d'une succession de pas aléatoires, ou

Special case

In logic, especially as applied in mathematics, concept A is a special case or specialization of concept B precisely if every instance of A is also an instance

Problème de l'isomorphisme de graphes

vignette|Le problème est de savoir si deux graphes sont les mêmes.
En informatique théorique, le problème de l'isomorphisme de graphes est le problème de décision qui consiste, étant donné deux graphe

Publications associées (3)

Chargement

Chargement

Chargement

Mahdi Cheraghchi Bashi Astaneh, Amin Karbasi, Soheil Mohajerzefreh

Non-adaptive group testing involves grouping arbitrary subsets of $n$ items into different pools and identifying defective items based on tests obtained for each pool. Motivated by applications in network tomography, sensor networks and infection propagation we formulate non-adaptive group testing problems on graphs. Unlike conventional group testing problems each group here must conform to the constraints imposed by a graph. For instance, items can be associated with vertices and each pool is any set of nodes that must be path connected. In this paper we associate a test with a random walk. In this context conventional group testing corresponds to the special case of a complete graph on $n$ vertices. For interesting classes of graphs we arrive at a rather surprising result, namely, that the number of tests required to identify $d$ defective items is substantially similar to that required in conventional group testing problems, where no such constraints on pooling is imposed. Specifically, if $T(n)$ corresponds to the mixing time of the graph $G$, we show that with $m=O(d^2T^2(n)\log(n/d))$ non-adaptive tests, one can identify the defective items. Consequently, for the Erdos-Renyi random graph $G(n,p)$, as well as expander graphs with constant spectral gap, it follows that $m=O(d^2\log^3n)$ non-adaptive tests are sufficient to identify $d$ defective items. We next consider a specific scenario that arises in network tomography and show that $m=O(d^3\log^3n)$ non-adaptive tests are sufficient to identify $d$ defective items. We also consider noisy counterparts of the graph constrained group testing problem and develop parallel results for these cases.

We live in a world characterized by massive information transfer and real-time communication. The demand for efficient yet low-complexity algorithms is widespread across different fields, including machine learning, signal processing and communications. Most of the problems that we encounter across these disciplines involves a large number of modules interacting with each other. It is therefore natural to represent these interactions and the flow of information between the modules in terms of a graph. This leads to the study of graph-based information processing framework. This framework can be used to gain insight into the development of algorithms for a diverse set of applications. We investigate the behaviour of large-scale networks (ranging from wireless sensor networks to social networks) as a function of underlying parameters. In particular, we study the scaling laws and applications of graph-based information processing in sensor networks/arrays, sparsity pattern recovery and interactive content search. In the first part of this thesis, we explore location estimation from incomplete information, a problem that arises often in wireless sensor networks and ultrasound tomography devices. In such applications, the data gathered by the sensors is only useful if we can pinpoint their positions with reasonable accuracy. This problem is particularly challenging when we need to infer the positions based on basic information/interaction such as proximity or incomplete (and often noisy) pairwise distances. As the sensors deployed in a sensor network are often of low quality and unreliable, we need to devise a mechanism to single out those that do not work properly. In the second part, we frame the network tomography problem as a well-studied inverse problem in statistics, called group testing. Group testing involves detecting a small set of defective items in a large population by grouping a subset of items into different pools. The result of each pool is a binary output depending on whether the pool contains a defective item or not. Motivated by the network tomography application, we consider the general framework of group testing with graph constraints. As opposed to conventional group testing where any subset of items can be grouped, here a test is admissible if it induces a connected subgraph. Given this constraint, we are interested in bounding the number of pools required to identify the defective items. Once the positions of sensors are known and the defective sensors are identified, we investigate another important feature of networks, namely, navigability or how fast nodes can deliver a message from one end to another by means of local operations. In the final part, we consider navigating through a database of objects utilizing comparisons. Contrary to traditional databases, users do not submit queries that are subsequently matched to objects. Instead, at each step, the database presents two objects to the user, who then selects among the pair the object closest to the target that she has in mind. This process continues until, based on the user’s answers, the database can identify the target she has in mind. The search through comparisons amounts to determining which pairs should be presented to the user in order to find the target object as quickly as possible. Interestingly, this problem has a natural connection with the navigability property studied in the second part, which enables us to develop efficient algorithms.

Many of the currently best-known approximation algorithms for NP-hard optimization problems are based on Linear Programming (LP) and Semi-definite Programming (SDP) relaxations. Given its power, this class of algorithms seems to contain the most favourable candidates for outperforming the current state-of-the-art approximation guarantees for NP-hard problems, for which there still exists a gap between the inapproximability results and the approximation guarantees that we know how to achieve in polynomial time. In this thesis, we address both the power and the limitations of these relaxations, as well as the connection between the shortcomings of these relaxations and the inapproximability of the underlying problem. In the first part, we study the limitations of LP relaxations of well-known graph problems such as the Vertex Cover problem and the Independent Set problem. We prove that any small LP relaxation for the aforementioned problems, cannot have an integrality gap strictly better than $2$ and $\omega(1)$, respectively. Furthermore, our lower bound for the Independent Set problem also holds for any SDP relaxation. Prior to our work, it was only known that such LP relaxations cannot have an integrality gap better than $1.5$ for the Vertex Cover Problem, and better than $2$ for the Independent Set problem. In the second part, we study the so-called knapsack cover inequalities that are used in the current best relaxations for numerous combinatorial optimization problems of covering type. In spite of their widespread use, these inequalities yield LP relaxations of exponential size, over which it is not known how to optimize exactly in polynomial time. We address this issue and obtain LP relaxations of quasi-polynomial size that are at least as strong as that given by the knapsack cover inequalities. In the last part, we show a close connection between structural hardness for k-partite graphs and tight inapproximability results for scheduling problems with precedence constraints. This connection is inspired by a family of integrality gap instances of a certain LP relaxation. Assuming the hardness of an optimization problem on k-partite graphs, we obtain a hardness of $2-\varepsilon$ for the problem of minimizing the makespan for scheduling with preemption on identical parallel machines, and a super constant inapproximability for the problem of scheduling on related parallel machines. Prior to this result, it was only known that the first problem does not admit a PTAS, and the second problem is NP-hard to approximate within a factor strictly better than 2, assuming the Unique Games Conjecture.