Publication

Nitrous Oxide Abatement over Fe-Zeolite

Bryan Bromley
2010
Thèse EPFL
Résumé

The use of zeolites for catalytic reactions is a field in continuous development. Since it was demonstrated that metal-zeolites are efficient catalysts for NOx abatement, decomposition of nitrous oxide (N2O) over Fe-containing zeolites has attracted great interest by the scientific community mainly due: N2O is the third most important gas contributing to global warming, its concentration in atmosphere is still on the rise and direct N2O decomposition to N2 and O2 is a sustainable alternative. N2O interaction with Fe-zeolite leads to the formation of "special" adsorbed oxygen (often called α-oxygen) with great potential for selective oxidation. Although the focus of a number of studies, the nature of the actives sites for the formation of this adsorbed oxygen is still unclear. The main objectives of this work are: 1) study the decomposition mechanism of N2O over isomorpously substituted Fe-ZSM-5 zeolite aiming on catalyst optimization and 2) optimization and further use of structured Fe-zeolite in novel micro-structured reactor. A number of refined transient kinetics methods were intensively used such as transient response, Temperature Programmed Desorption (TPD) and Temporal Analysis of Product (TAP). Density Functional Theory (DFT) and in situ IR spectroscopy studies were conducted in collaboration and our results support the following: In chapter 3, quantitative measurements have been carrier out to analyze the effect of temperature on the activation (under helium flow) and the irreversible deactivations that can happen during the pretreatment. The results obtained indicate that high temperature treatment (1273 K) results in the formation of a high amount of α-sites. The addition of a very low fraction of oxygen (2%) in the feed demonstrates that the catalyst is sensitive to its presence. Certain sites can be irreversibly destroyed, a result ascribed to the oxidation of active Fe(II) to Fe2O3 clusters which contain inactive Fe(III). Catalyst treatment at high temperature (1273 K) in He for up to 3 hours, also reduced irreversibly the concentration of α-sites. TPD measurements have shown desorption of oxygen at 3 different temperatures. Desorption at the lowest temperature (650 K) was assign to the α-oxygen recombination. The oxygen which desorbs at 700 K was associated to the oxygen from the deactivated sites. Oxygen which desorbs at the highest temperature (730 K) is originated from the surface NOx that desorbed as NO and O2. After a comparison of the concentration of the molecules accumulated, we propose that NO2 is the adsorbed specie. The mechanism of N2O decomposition on the binuclear oxo-hydroxo bridged extraframework iron core site [FeII(μ-O)(μ-OH)FeII]+ inside the ZSM-5 zeolite has been studied by combining theoretical and experimental approaches (see chapter 4). Rate parameters computed using standard statistical mechanics and transition state theory reveal that elementary catalytic steps involved into N2O decomposition are strongly dependent on the temperature. This theoretical result was contrasted with the experimentally observed steady state kinetics of the N2O decomposition and TPD experiments. As predicted by the theoretical study, the switch of the reaction order with respect to N2O pressure (from zero to one) occurs at around 800 K which confirms a change of the rate determining step from the α-oxygen recombination to α-oxygen formation. The proposed mechanism was also confirmed by O2-TD which confirmed the viability of the binuclear complex. The α-oxygen recombination at low temperature (

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (43)
Rate equation
In chemistry, the rate law or rate equation for a chemical reaction is a mathematical equation that links the rate of forward reaction with the concentrations or pressures of the reactants and constant parameters (normally rate coefficients and partial reaction orders). For many reactions, the initial rate is given by a power law such as where [\mathrm{A}] and [\mathrm{B}] express the concentration of the species \mathrm{A} and \mathrm{B}, usually in moles per liter (molarity, M).
Processus unimoléculaire
Un processus unimoléculaire est un processus dans lequel une seule molécule réagit afin de se transformer en une autre molécule (isomérisation) ou bien en plusieurs molécules (dissociation). En cinétique chimique, une étape élémentaire unimoléculaire sera d'ordre un par rapport au seul réactif. Si une réaction unimoléculaire donnée n'est pas d'ordre un expérimentalement, il faut conclure qu'il possède plus qu'une étape élémentaire. En pratique, nombreuses réactions unimoléculaires sont d'ordre deux, ce qui s'explique par le mécanisme Lindemann-Hinshelwood de deux étapes.
Mécanisme réactionnel
En chimie, un mécanisme réactionnel est l'enchainement d'étapes, de réactions élémentaires, par lequel un changement chimique a lieu. Bien que, pour la plupart des réactions, seul le bilan global (transformation des réactifs en produits) soit observable directement, des expériences permettent de déterminer la séquence possible des étapes du mécanisme réactionnel associé. Un mécanisme réactionnel décrit en détail ce qui se passe à chaque étape d'une transformation chimique.
Afficher plus
Publications associées (310)

Heterogeneous catalysis via light-heat dual activation: A path to the breakthrough in C1 chemistry

Bingqiao Xie

A hybrid photothermal catalytic system, which combines both the photochemical (light) and thermal (heat) activation pathways over a bifunctional catalyst, has demonstrated remarkable levels of reaction activity and selectivity when compared with individual ...
Cell Press2024

Probing Catalytic Sites and Adsorbate Spillover on Ultrathin FeO2-x Film on Ir(111) during CO Oxidation

Harald Brune, Hao Yin, Wei Fang

The spatially resolved identification of active sites on the heterogeneous catalyst surface is an essential step toward directly visualizing a catalytic reaction with atomic scale. To date, ferrous centers on platinum group metals have shown promising pote ...
Washington2024

The simultaneous Selective Catalytic Reduction of N2O and NO over Fe-exchanged zeolites

Filippo Buttignol

Iron-exchanged zeolites are industrial heterogeneous catalysts deployed to remediate anthropogenic emissions of both nitrous oxide (N2O) and nitrogen oxides (NOx = NO + NO2). Despite the extensive scientific attention received, limited knowledge is availab ...
EPFL2024
Afficher plus
MOOCs associés (28)
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Applications
Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.