Sélection naturellevignette|Selon les principes de la sélection naturelle de Darwin, les pinsons des Galápagos sont issus d'une espèce souche venue du continent. La sélection s'est traduite par une spécialisation de la taille de leur bec en liaison avec leur régime alimentaire (seconde édition de son la publiée en 1845). En biologie, la est l'un des mécanismes moteurs de l'évolution des espèces qui explique le succès reproductif différentiel entre des individus d'une même espèce et le succès différentiel des gènes présents dans une population.
Directional selectionIn population genetics, directional selection, is a mode of negative natural selection in which an extreme phenotype is favored over other phenotypes, causing the allele frequency to shift over time in the direction of that phenotype. Under directional selection, the advantageous allele increases as a consequence of differences in survival and reproduction among different phenotypes. The increases are independent of the dominance of the allele, and even if the allele is recessive, it will eventually become fixed.
Sélection stabilisatriceEn génétique des populations, la sélection stabilisatrice ou stabilisante (à ne pas confondre avec la sélection négative ou purificatrice) est un mode de sélection naturelle dans laquelle la moyenne de la population se stabilise sur une valeur de trait non extrême particulière. On pense que c'est le mécanisme d'action le plus courant pour la sélection naturelle car la plupart des traits ne semblent pas changer radicalement au cours du temps.
Apprentissage automatiqueL'apprentissage automatique (en anglais : machine learning, « apprentissage machine »), apprentissage artificiel ou apprentissage statistique est un champ d'étude de l'intelligence artificielle qui se fonde sur des approches mathématiques et statistiques pour donner aux ordinateurs la capacité d'« apprendre » à partir de données, c'est-à-dire d'améliorer leurs performances à résoudre des tâches sans être explicitement programmés pour chacune. Plus largement, il concerne la conception, l'analyse, l'optimisation, le développement et l'implémentation de telles méthodes.
Sélection de caractéristiqueLa sélection de caractéristique (ou sélection d'attribut ou de variable) est un processus utilisé en apprentissage automatique et en traitement de données. Il consiste, étant donné des données dans un espace de grande dimension, à trouver un sous-sensemble de variables pertinentes. C'est-à-dire que l'on cherche à minimiser la perte d'information venant de la suppression de toutes les autres variables. C'est une méthode de réduction de la dimensionnalité. Extraction de caractéristique Catégorie:Apprentissage
Recherche d'informationLa recherche d'information (RI) est le domaine qui étudie la manière de retrouver des informations dans un corpus. Celui-ci est composé de documents d'une ou plusieurs bases de données, qui sont décrits par un contenu ou les métadonnées associées. Les bases de données peuvent être relationnelles ou non structurées, telles celles mises en réseau par des liens hypertexte comme dans le World Wide Web, l'internet et les intranets. Le contenu des documents peut être du texte, des sons, des images ou des données.
Apprentissage profondL'apprentissage profond ou apprentissage en profondeur (en anglais : deep learning, deep structured learning, hierarchical learning) est un sous-domaine de l’intelligence artificielle qui utilise des réseaux neuronaux pour résoudre des tâches complexes grâce à des architectures articulées de différentes transformations non linéaires. Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du signal sonore ou visuel et notamment de la reconnaissance faciale, de la reconnaissance vocale, de la vision par ordinateur, du traitement automatisé du langage.
Science de l'informationLa science de l'information (ou les sciences de l'information) est un champ disciplinaire ayant pour objet scientifique l'information, lequel est principalement concerné par l'analyse, la collecte, la classification, la manipulation, le stockage, la récupération, la circulation, la diffusion et la protection de l'information. Les praticiens, qu'ils travaillent ou non sur le terrain, étudient l'application et l'utilisation des connaissances dans les organisations, ainsi que l'interaction entre les personnes, les organisations et tout système d'information existant, dans le but de créer, remplacer, améliorer ou comprendre les systèmes d'information.
Feature (machine learning)In machine learning and pattern recognition, a feature is an individual measurable property or characteristic of a phenomenon. Choosing informative, discriminating and independent features is a crucial element of effective algorithms in pattern recognition, classification and regression. Features are usually numeric, but structural features such as strings and graphs are used in syntactic pattern recognition. The concept of "feature" is related to that of explanatory variable used in statistical techniques such as linear regression.
Sélection de groupevignette|En 1994, et , propose la théorie de la sélection multi-niveaux, illustrée par l'emboîtement de poupées russes. La sélection naturelle pourrait s'exercer au niveau du gène, de la cellule, de l'organisme ou du groupe La sélection de groupe est une généralisation de la théorie de l'évolution par voie de sélection naturelle de Darwin, selon laquelle un groupe d'organismes qui coopèrent fonctionne mieux, à terme, qu'un groupe dont les membres sont en compétition.