Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
This work deals with the kinematic conception and the mechanical design of ultra-high precision robots, which are at present costly to develop, both in time and money. The aim of this paper is thus to introduce a new modular concept of kinematics which allows to significantly reduce the time-to-market and a new double-stage flexure-based pivot. Regarding the modular concept of kinematics, this ‘robotic Lego’ consists in a finite number of building bricks allowing to rapidly design a high precision machine and to easily modify its mobility. The realised mock-up of a 4-DOF (Degrees of Freedom) robot, transformable into a 5-DOF one, validates this concept and the mechanical design of its bricks. Flexure hinges are used to achieve the aimed sub-micrometer precision; however, existing flexure-based rotary joints are not able to fulfil the requirements of some applications, as they present a too low angular stroke and a parasitic motion of their centre of rotation. Thus, this paper also introduces a new double-stage pivot based on blades working in torsion; experiments performed on a prototype allow to validate its principle and the simulation model used for its development.
Simon François Dumas Primbault
, ,