Fonction de dérivation de cléEn cryptographie, une fonction de dérivation de clé (en anglais, key derivation function ou KDF) est une fonction qui dérive une ou plusieurs clés secrètes d'une valeur secrète comme un mot de passe ou une phrase secrète en utilisant une fonction pseudo-aléatoire. Les fonctions de dérivation de clé peuvent être utilisées pour renforcer des clés en les étirant ou pour obtenir des clés d'un certain format. Les fonctions de dérivation de clé sont souvent utilisées conjointement avec des paramètres non secrets (appelés sels cryptographiques) pour dériver une ou plusieurs clés à partir d'une valeur secrète.
Polynomial greatest common divisorIn algebra, the greatest common divisor (frequently abbreviated as GCD) of two polynomials is a polynomial, of the highest possible degree, that is a factor of both the two original polynomials. This concept is analogous to the greatest common divisor of two integers. In the important case of univariate polynomials over a field the polynomial GCD may be computed, like for the integer GCD, by the Euclidean algorithm using long division. The polynomial GCD is defined only up to the multiplication by an invertible constant.
Apprentissage avec erreursL'apprentissage avec erreurs, souvent abrégé LWE (acronyme de l'anglais Learning With Errors), est un problème calculatoire supposé difficile. Il est au cœur de nombreux cryptosystèmes récents et constitue l'une des principales pistes de recherche pour le développement de la cryptographie post-quantique. L'introduction de ce problème par Oded Regev dans la communauté informatique, et ses travaux sur ce sujet, lui ont valu de recevoir le prix Gödel en 2018.
Implied volatilityIn financial mathematics, the implied volatility (IV) of an option contract is that value of the volatility of the underlying instrument which, when input in an option pricing model (such as Black–Scholes), will return a theoretical value equal to the current market price of said option. A non-option financial instrument that has embedded optionality, such as an interest rate cap, can also have an implied volatility. Implied volatility, a forward-looking and subjective measure, differs from historical volatility because the latter is calculated from known past returns of a security.
Ideal latticeIn discrete mathematics, ideal lattices are a special class of lattices and a generalization of cyclic lattices. Ideal lattices naturally occur in many parts of number theory, but also in other areas. In particular, they have a significant place in cryptography. Micciancio defined a generalization of cyclic lattices as ideal lattices. They can be used in cryptosystems to decrease by a square root the number of parameters necessary to describe a lattice, making them more efficient.
Volatility smileVolatility smiles are implied volatility patterns that arise in pricing financial options. It is a parameter (implied volatility) that is needed to be modified for the Black–Scholes formula to fit market prices. In particular for a given expiration, options whose strike price differs substantially from the underlying asset's price command higher prices (and thus implied volatilities) than what is suggested by standard option pricing models. These options are said to be either deep in-the-money or out-of-the-money.
Méthode de Ruffini-HornerEn mathématiques et algorithmique, la méthode de Ruffini-Horner, connue aussi sous les noms de méthode de Horner, algorithme de Ruffini-Horner ou règle de Ruffini, se décline sur plusieurs niveaux. Elle permet de calculer la valeur d'un polynôme en x. Elle présente un algorithme simple effectuant la division euclidienne d'un polynôme par X − x. Mais elle offre aussi une méthode de changement de variable X = x + Y dans un polynôme. C'est sous cette forme qu'elle est utilisée pour déterminer une valeur approchée d'une racine d'un polynôme.
ResteEn mathématiques, le résultat d’une division est un quotient et un reste. Le reste est nul si le quotient des deux nombres de la division est exact, sinon ce quotient est approximatif. Une division est dite euclidienne quand son dividende, son diviseur et son quotient sont des nombres entiers naturels. Dans une division euclidienne, le produit du quotient et du diviseur plus le reste est égal au dividende, et le reste est un entier naturel strictement inférieur au diviseur.
Polynomial evaluationIn mathematics and computer science, polynomial evaluation refers to computation of the value of a polynomial when its indeterminates are substituted for some values. In other words, evaluating the polynomial at consists of computing See also For evaluating the univariate polynomial the most naive method would use multiplications to compute , use multiplications to compute and so on for a total of multiplications and additions. Using better methods, such as Horner's rule, this can be reduced to multiplications and additions.