Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
In this paper we consider (hierarchical, Lagrange) reduced basis approximation and a posteriori error estimation for potential flows in affinely parametrized geometries. We review the essential ingredients: i) a Galerkin projection onto a low dimensional space associated with a smooth “parametric manifold” in order to get a dimension reduction; ii) an efficient and effective greedy sampling method for identification of optimal and numerically stable approximations to have a rapid convergence; iii) an a posteriori error estimation procedure: rigorous and sharp bounds for the linearfunctional outputs of interest and over the potential solution or related quantities of interest like velocity and/or pressure; iv) an Offline-Online computational decomposition strategies to achieve a minimum marginal computational cost for high performance in the real-time and many-query (e.g., design and optimization) contexts. We present three illustrative results for inviscid potential flows in parametrized geometries representing a Venturi channel, a circular bend and an added mass problem.
Annalisa Buffa, Denise Grappein, Rafael Vazquez Hernandez, Ondine Gabrielle Chanon
, ,