Champ de vecteursthumb|Un exemple de champ de vecteurs, de la forme (-y,x). thumb|Autre exemple. thumb|Le flux d'air autour d'un avion est un champ tridimensionnel (champ des vitesses des particules d'air), ici visualisé par les bulles qui matérialisent les lignes de courant. En mathématiques, un champ de vecteurs ou champ vectoriel est une fonction qui associe un vecteur à chaque point d'un espace euclidien ou plus généralement d'une variété différentielle.
Binary classificationBinary classification is the task of classifying the elements of a set into two groups (each called class) on the basis of a classification rule. Typical binary classification problems include: Medical testing to determine if a patient has certain disease or not; Quality control in industry, deciding whether a specification has been met; In information retrieval, deciding whether a page should be in the result set of a search or not. Binary classification is dichotomization applied to a practical situation.
Classement automatiquevignette|La fonction 1-x^2-2exp(-100x^2) (rouge) et les valeurs déplacées par un bruit de 0,1*N(0,1). Le classement automatique ou classification supervisée est la catégorisation algorithmique d'objets. Elle consiste à attribuer une classe ou catégorie à chaque objet (ou individu) à classer, en se fondant sur des données statistiques. Elle fait couramment appel à l'apprentissage automatique et est largement utilisée en reconnaissance de formes. En français, le classement fait référence à l'action de classer donc de « ranger dans une classe ».
Économie de la république populaire de ChineLa Chine est le deuxième pays du monde par son produit intérieur brut (PIB) nominal, derrière les États-Unis. En 2014, elle est devenue, selon les dernières estimations de la Banque mondiale, le premier pays au monde pour le PIB à parité de pouvoir d'achat (PPA), passant devant les États-Unis. En 2017, le produit intérieur brut (PIB) en PPA chinois s'est élevé à environ de UScontredeUS approximativement pour les États-Unis, ce qui confirme bien le dépassement chinois à long terme. Analyse vectorielleL'analyse vectorielle est une branche des mathématiques qui étudie les champs de scalaires et de vecteurs suffisamment réguliers des espaces euclidiens, c'est-à-dire les applications différentiables d'un ouvert d'un espace euclidien à valeurs respectivement dans et dans . Du point de vue du mathématicien, l'analyse vectorielle est donc une branche de la géométrie différentielle. Cette dernière inclut l'analyse tensorielle qui apporte des outils plus puissants et une analyse plus concise entre autres des champs de vecteurs.
À-coupEn mécanique, un à-coup, également saccade ou secousse, est une brusque variation du vecteur accélération sans notion de choc, comme un conducteur donnant un coup d'accélérateur, un coup de frein ou un coup de volant. En physique, le vecteur d'à-coup (en anglais : jerk (pron. /dʒɜːk/, « djk ») aux États-Unis ou jolt en Grande-Bretagne) est la dérivée du vecteur accélération par rapport au temps (soit la dérivée troisième par rapport au temps du vecteur position).
Traitement du signalLe traitement du signal est la discipline qui développe et étudie les techniques de traitement, d'analyse et d' des . Parmi les types d'opérations possibles sur ces signaux, on peut dénoter le contrôle, le filtrage, la compression et la transmission de données, la réduction du bruit, la déconvolution, la prédiction, l'identification, la classification Bien que cette discipline trouve son origine dans les sciences de l'ingénieur (particulièrement l'électronique et l'automatique), elle fait aujourd'hui largement appel à de nombreux domaines des mathématiques, comme la , les processus stochastiques, les espaces vectoriels et l'algèbre linéaire et des mathématiques appliquées, notamment la théorie de l'information, l'optimisation ou encore l'analyse numérique.
Classification (science de l'information)thumb|250px|Le de la Bibliothèque de l'université de Graz (Autriche). Les classifications bibliographiques, telles que celles mises en œuvre dans les bibliothèques, ont été les premiers outils d'organisation thématique des ouvrages. Ces systèmes de classification « permettent de représenter de façon synthétique le sujet d'un document, et de regrouper les ouvrages sur les rayons par affinité de contenu ».
Classification en classes multiplesIn machine learning and statistical classification, multiclass classification or multinomial classification is the problem of classifying instances into one of three or more classes (classifying instances into one of two classes is called binary classification). While many classification algorithms (notably multinomial logistic regression) naturally permit the use of more than two classes, some are by nature binary algorithms; these can, however, be turned into multinomial classifiers by a variety of strategies.
Automatic identification and data captureAutomatic identification and data capture (AIDC) refers to the methods of automatically identifying objects, collecting data about them, and entering them directly into computer systems, without human involvement. Technologies typically considered as part of AIDC include QR codes, bar codes, radio frequency identification (RFID), biometrics (like iris and facial recognition system), magnetic stripes, optical character recognition (OCR), smart cards, and voice recognition.