Dynamic control of the speed of a light signal, based on stimulated Brillouin scattering in optical fibers, was theoretically studied and also experimentally demonstrated as the core object of this thesis. To date, slow light based on stimulated Brillouin scattering has shown the unmatched flexibility to offer an efficient timing tool for the development of all-optical future router. Nevertheless, the seeming perfect Brillouin slow light suffered from three major obstacles: naturally narrow signal bandwidth, strong change of signal amplitude, and significant signal distortion. The essential contribution of this work has been mostly dedicated to resolve all those impairments so as to make Brillouin slow light a completely operating all-optical delay line for practical applications. Actually, high capability of tailoring the spectral distribution of the effective Brillouin resonance makes possible to resolve partially or completely all those problems. First of all, a broadband spectral window was passively obtained in between two Brillouin gain/loss resonances by simply appending two segments of fibers showing different Brillouin frequency shifts. The global Brillouin gain of the concatenated fibers manifests a gain/loss doublet resonance showing a broad window in between gain/loss peaks. In practice, this configuration has a crucial advantage that it removes the need of the pump modulation, generally used to create a polychromatic pump source. Therefore, a broadband Brillouin slow and fast light was simple realized with a reduced distortion. Secondly, the signal amplification or attenuation associated to the signal delay was completely compensated by superposing Brillouin gain and loss resonances with identical depth but different width. As a result, the Brillouin gain led to effectively a spectral hole in the center of the broadband absorption and opened a transparent window while the sharp change in the refractive index was preserve. This way it makes possible to realize zero-gain Brillouin slow light. This configuration was also exploited to produce Brillouin fast light with a total absence of signal loss, simply by swapping the spectral position of the two pumps. At last, a signal was continuously delayed through a Brillouin fiber delay line without any distortion. Due to the strong induced dispersion, pulse broadening is a major difficulty in all slow light systems and it is impossible to compensate such broadening using a linear system. Therefore, a conventional Brillouin slow light system was combined with a nonlinear optical fiber loop mirror that gives a nonlinear quadratic transmission. Using this configuration, the inevitable pulse broadening was completely compensated at the output of the loop and a signal was delayed up to one symbol without any distortion. Brillouin slow light systems were further studied in the spectral domain. For a given Brillouin resonance the spectrum of a light pulse was optimized to better match the Brillouin