Data sharingData sharing is the practice of making data used for scholarly research available to other investigators. Many funding agencies, institutions, and publication venues have policies regarding data sharing because transparency and openness are considered by many to be part of the scientific method. A number of funding agencies and science journals require authors of peer-reviewed papers to share any supplemental information (raw data, statistical methods or source code) necessary to understand, develop or reproduce published research.
Inférence statistiquevignette|Illustration des 4 principales étapes de l'inférence statistique L'inférence statistique est l'ensemble des techniques permettant d'induire les caractéristiques d'un groupe général (la population) à partir de celles d'un groupe particulier (l'échantillon), en fournissant une mesure de la certitude de la prédiction : la probabilité d'erreur. Strictement, l'inférence s'applique à l'ensemble des membres (pris comme un tout) de la population représentée par l'échantillon, et non pas à tel ou tel membre particulier de cette population.
Filtre HEPAUn filtre HEPA est un filtre à air à haute efficacité (acronyme de l'anglais high-efficiency particulate air signifiant « [filtre] à particules aériennes à haute efficacité »), on utilise également l'expression « filtre THE » (signifiant « très haute efficacité »). La dénomination HEPA s'applique à tout dispositif capable de filtrer, en un passage, au moins 99,97 % des particules de diamètre supérieur ou égal à . Les particules de dimension de l'ordre de sont les plus difficiles à filtrer.
Sélection de caractéristiqueLa sélection de caractéristique (ou sélection d'attribut ou de variable) est un processus utilisé en apprentissage automatique et en traitement de données. Il consiste, étant donné des données dans un espace de grande dimension, à trouver un sous-sensemble de variables pertinentes. C'est-à-dire que l'on cherche à minimiser la perte d'information venant de la suppression de toutes les autres variables. C'est une méthode de réduction de la dimensionnalité. Extraction de caractéristique Catégorie:Apprentissage