Model-Based Compressive Sensing for Signal Ensembles
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Sampling has always been at the heart of signal processing providing a bridge between the analogue world and discrete representations of it, as our ability to process data in continuous space is quite limited. Furthermore, sampling plays a key part in unde ...
In this paper we show that it is sufficient to recover the locations of K strong reflectors within an insonified medium from three receive elements and 2K+1 samples per element. The proposed approach leverages advances in sampling signals with a finite rat ...
Shannon's sampling theorem for bandlimited signals, formulated in 1949, has become a cornerstone for modern digital communications and signal processing. The importance of sampling and reconstruction of analog signals has led to great advances in the field ...
Foundations of signal processing are heavily based on Shannon's sampling theorem for acquisition, representation and reconstruction. This theorem states that signals should not contain frequency components higher than the Nyquist rate, which is half of the ...
The theme of this thesis revolves around three important manifestations of light, namely its corpuscular, wave and electromagnetic nature. Our goal is to exploit these principles to analyze, design and build imaging modalities by developing new signal proc ...
Sampling moiré effects are well known in signal processing. They occur when a continuous periodic signal g(x) is sampled using a sampling frequency fs that does not respect the Nyquist condition, and the signal frequency f folds-over and gives a new, false ...
Compressed sensing is provided a data-acquisition paradigm for sparse signals. Remarkably, it has been shown that the practical algorithms provide robust recovery from noisy linear measurements acquired at a near optimal sampling rate. In many real-world a ...
In this paper we show that it is sufficient to recover the locations of K strong reflectors within an insonified medium from three receive elements and 2K+1 samples per element. The proposed approach leverages advances in sampling signals with a finite rat ...
While the recent theory of compressed sensing provides an opportunity to overcome the Nyquist limit in recovering sparse signals, a solution approach usually takes the form of an inverse problem of an unknown signal, which is crucially dependent on specifi ...
The standard approach to compressive sampling considers recovering an unknown deterministic signal with certain known structure, and designing the sub-sampling pattern and recovery algorithm based on the known structure. This approach requires looking for ...