Publication

Unified Theory for Recovery of Sparse Signals in a General Transform Domain

Kyong Hwan Jin
2018
Article
Résumé

Compressed sensing is provided a data-acquisition paradigm for sparse signals. Remarkably, it has been shown that the practical algorithms provide robust recovery from noisy linear measurements acquired at a near optimal sampling rate. In many real-world applications, a signal of interest is typically sparse not in the canonical basis but in a certain transform domain, such as wavelets or the finite difference. The theory of compressed sensing was extended to the analysis sparsity model, but known extensions are limited to the specific choices of sensing matrix and sparsifying transform. In this paper, we propose a unified theory for robust recovery of sparse signals in a general transform domain by convex programming. In particular, our results apply to the general acquisition and sparsity models and show how the number of measurements for recovery depends on properties of measurement and sparsifying transforms. Moreover, we also provide extensions of our results to the scenarios where the atoms in the transform have varying incoherence parameters and the unknown signal exhibits a structured sparsity pattern. In particular, for the partial Fourier recovery of sparse signals over a circulant transform, our main results suggest a uniformly random sampling. Numerical results demonstrate that the variable density random sampling by our main results provides a superior recovery performance over the known sampling strategies.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.