Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Different inks may have different mechanical and/or optical properties. Existing Yule-Nielsen modified Neugebauer spectral prediction models assume however that the inks forming a color halftone behave similarly, i.e. that a single n-factor can model the lateral propagation of light within the paper as well as non-uniformities of the ink dot thickness profiles. However, if the inks have very different optical or mechanical properties, each ink may be separately modeled with its specific n-factor. In order to predict the reflection spectrum of such color halftones, we extend the ink spreading enhanced Yule-Nielsen modified spectral Neugebauer (EYNSN) model by calculating for each halftone an optimal n-factor as an average of the ink specific n-factors weighted by a parabolic function of the ink surface coverages. We compare the prediction accuracies of the standard EYNSN model where each halftone is predicted by making use of one global n-factor with the predictions accuracies of the extended EYNSN model where each halftone is predicted with its corresponding optimal n-factor derived from the individual ink-specific n-factors. For inks having very different optical and/or mechanical properties, we observe an improvement of the prediction accuracies.
Frank Nüesch, Jakob Heier, Sina Abdolhosseinzadeh, Mohammad Jafarpour