Publication

Meta Transfer Learning for Early Success Prediction in MOOCs

Vinitra Swamy, Mirko Marras
2022
Article de conférence
Résumé

Despite the increasing popularity of massive open online courses (MOOCs), many suffer from high dropout and low success rates. Early prediction of student success for targeted intervention is therefore essential to ensure no student is left behind in a course. There exists a large body of research in success prediction for MOOCs, focusing mainly on training models from scratch for individual courses. This setting is impractical in early success prediction as the performance of a student is only known at the end of the course. In this paper, we aim to create early success prediction models that can be transferred between MOOCs from different domains and topics. To do so, we present three novel strategies for transfer: 1) pre-training a model on a large set of diverse courses, 2) leveraging the pre-trained model by including meta information about courses, and 3) fine-tuning the model on previous course iterations. Our experiments on 26 MOOCs with over 145,000 combined enrollments and millions of interactions show that models combining interaction data and course information have comparable or better performance than models which have access to previous iterations of the course. With these models, we aim to effectively enable educators to warm-start their predictions for new and ongoing courses.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.