Genes that fight infection: what the Drosophila genome says about animal immunity
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Rationale: Daily rifapentine plus isoniazid-pyrazinamide in mice infected with Mycobacterium tuberculosis produces cure in 3 months. Whether cure corresponds to latent infection contained by host immunity or true tissue sterilization is unknown. ...
Drosophila phagocytes participate in development and immune responses through their abilities to perform phagocytosis and/or secrete extra-cellular matrix components, antimicrobial peptides, clotting factors and signalling molecules. However, our knowledge ...
Peptidoglycan recognition proteins (PGRPs) are key regulators of insect immune responses. In addition to recognition PGRPs, which activate the Toll and Imd pathways, the Drosophila genome encodes six catalytic PGRPs with the capacity to scavenge peptidogly ...
Invertebrates lack an adaptive immune system and rely on innate immunity to resist pathogens. The response of Drosophila melanogaster to bacterial and fungal infections involves two signaling pathways, Toll and Imd, both of which activate members of the nu ...
To combat infection, the fruit fly Drosophila melanogaster relies on multiple innate defense reactions, many of which are shared with higher organisms. These reactions include the use of physical barriers together with local and systemic immune responses. ...
This chapter discusses the mechanisms whereby Drosophila recognize foreign microbes, the signalling systems that regulate adapted responses against them, and the effector mechanisms used to control them. It first focuses on the so-called systemic antimicro ...
This paper presents a new approach for monitoring and estimating device reliability of nanometer-scale devices prior to fabrication. A four-layer architecture exhibiting a large immunity to permanent as well as random failures is used. A complete tool for ...
Pathogens have developed multiple strategies that allow them to exploit host resources and resist the immune response. To study how Drosophila flies deal with infectious diseases in a natural context, we investigated the interactions between Drosophila and ...
This paper presents a case study of different fault-tolerant architectures. The emphasis is on the silicon realization. A 128bit AES cryptographic core has been designed and fabricated as a main topology on which the fault-tolerant architectures have been ...
In naive individuals, the administration of bacterial lipopolysaccharide (LPS) provokes a rapid systemic increase in pro-inflammatory cytokines such as tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta and IL-6, inducing an acute phase response inc ...