On the accuracy of reactor physics calculations for square HPLWR fuel assemblies
Publications associées (70)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
The safe and economic operation of nuclear power plants (NPPs) requires that the behaviour and performance of the fuel can be calculated reliably over its expected lifetime. This requires highly developed codes that treat the nuclear fuel in a general mann ...
Fuel rods with burnup values beyond 50GWd/t are characterised by relatively large amounts of fission products and a high abundance of major and minor actinides. Of particular interest is the change in the reactivity of the fuel as a function of burnup and ...
The improvement of the "radiological cleanliness" of nuclear energy is a primary goal in the development of advanced reactors and fuel cycles. The multiple recycling of actinides in advanced nuclear systems with fast neutron spectra represents a key option ...
Current fuel management strategies for light water reactors (LWRs), in countries with high back-end costs, progressively extend the discharge burnup at the expense of increasing the 235U enrichment of the fresh UO2 fuel loaded. In this perspective, standar ...
High-resolution gamma spectroscopy was performed on individual fuel rods of a fresh, highly heterogeneous Boiling Water Reactor (BWR) fuel assembly, after irradiation at low power in the PROTEUS reactor at PSI, to determine the ratio of neutron captures in ...
An important source of uncertainty in boiling water reactor physics is associated with the precise characterisation of the moderation properties of the coolant and by-pass regions, with significant impact on reactor physics parameters such as the lattice n ...
A consistent analytical comparison has been made of the transient behavior of critical and subcritical fast-spectrum reactor systems, the basic core design assumed in each case being that of the 80-MW(thermal) mixed-oxide-fueled, Pb-Bi-cooled, experimental ...
From the neutronic viewpoint, the optimization of BWR core designs is strongly related to the accurate determination of flux variations inside and around fuel assemblies. These fluctuations, which are mainly due to the high heterogeneity of the fuel and mo ...
The FAST code system is a general tool for analyzing advanced reactors from the viewpoint of the static and dynamic behavior of the whole reactor system. It includes an integrated three-dimensional representation of the core neutronics, appropriate modelin ...
The increasing complexity and heterogeneity of modern light water reactor (LWR) fuel assemblies impose new challenges to current reactor physics codes in terms of maintaining and improving the quality of neutronics predictions for the core. In particular, ...