Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
This thesis is devoted to the study of the effect of disorder on low-dimensional weakly interacting Bose gases. In particular, the disorder triggers a quantum phase transition in one dimension at zero temperature that is investigated here through the study ...
A quantum fluid passing an obstacle behaves differently from a classical one. When the flow is slow enough, the quantum gas enters a superfluid regime, and neither whirlpools nor waves form around the obstacle. For higher flow velocities, it has been predi ...
After the observation of Bose-Einstein condensation in the solid state in 2006 and the demonstration on its superfluid character in 2009 the interest for the demonstration of the underlying elementary excitations – the Bogoliubov excitations – was growing. ...
We theoretically study the superfluidity properties of a nonequilibrium Bose-Einstein condensate of exciton polaritons in a semiconductor microcavity under incoherent pumping. The dynamics of the condensate is described at mean-field level in terms of a ge ...
The present Ph.D. thesis consists in a series of experiments carried out in the Laboratory of Quantum Optoelectronics under the direction of professor Benoît Deveaud-Plédran between April 2006 and April 2010. We study the effect of lateral confinement on t ...
Quantized vortices appear in quantum gases at the breakdown of superfluidity. In liquid helium and cold atomic gases, they have been indentified as the quantum counterpart of turbulence in classical fluids. In the solid state, composite light-matter bosons ...
Exciton polaritons have been shown to be an optimal system in order to investigate the properties of bosonic quantum fluids. We report here on the observation of dark solitons in the wake of engineered circular obstacles and their decay into streets of qua ...
Although photons in vacuum are massless particles that do not appreciably interact with each other, significant interactions appear in suitable nonlinear media, leading to hydrodynamic behaviours typical of quantum fluids(1-6). Here, we show the generation ...
We study theoretically Bloch oscillations of half-matter, half-light quasiparticles: exciton-polaritons. We propose an original structure for the observation of this phenomenon despite the constraints imposed by the relatively short lifetime of the particl ...
Microcavity exciton-polaritons are half-matter half-light quasiparticles with outstanding properties. This offers a great way to access and control fundamental excitations in a solid by simple optical means. Therefore, apart from their importance in fundam ...