Coloration de listevignette|301x301px| Une instance de coloration de liste du graphe biparti complet K 3,27 avec trois couleurs par sommet. Pour tout choix de couleurs des trois sommets centraux, l'un des 27 sommets extérieurs ne peut être coloré, ce qui montre que le nombre chromatique de liste de K 3,27 est au moins quatre. En théorie des graphes, la coloration de liste est une coloration des sommets d'un graphe où la couleur de chaque sommet est restreinte à une liste de couleurs autorisées.
Universal vertexIn graph theory, a universal vertex is a vertex of an undirected graph that is adjacent to all other vertices of the graph. It may also be called a dominating vertex, as it forms a one-element dominating set in the graph. (It is not to be confused with a universally quantified vertex in the logic of graphs.) A graph that contains a universal vertex may be called a cone. In this context, the universal vertex may also be called the apex of the cone.
Classe de complexitéEn informatique théorique, et plus précisément en théorie de la complexité, une classe de complexité est un ensemble de problèmes algorithmiques dont la résolution nécessite la même quantité d'une certaine ressource. Une classe est souvent définie comme l'ensemble de tous les problèmes qui peuvent être résolus sur un modèle de calcul M, utilisant une quantité de ressources du type R, où n, est la taille de l'entrée. Les classes les plus usuelles sont celles définies sur des machines de Turing, avec des contraintes de temps de calcul ou d'espace.
Computational complexityIn computer science, the computational complexity or simply complexity of an algorithm is the amount of resources required to run it. Particular focus is given to computation time (generally measured by the number of needed elementary operations) and memory storage requirements. The complexity of a problem is the complexity of the best algorithms that allow solving the problem. The study of the complexity of explicitly given algorithms is called analysis of algorithms, while the study of the complexity of problems is called computational complexity theory.
Voisinage (théorie des graphes)En théorie des graphes on dit que deux sommets d'un graphe non-orienté sont voisins ou adjacents s'ils sont reliés par une arête. Le voisinage d'un sommet peut désigner l'ensemble de ses sommets voisins ou bien un sous-graphe associé, par exemple le sous-graphe induit. Dans un graphe orienté, on emploie généralement le terme de prédécesseur ou de successeur. Dans un graphe non orienté , le voisinage d'un sommet , souvent noté (N pour neighbourhood) peut désigner plusieurs choses : L'ensemble des sommets voisins : Les sous-graphe de induit par les sommets précédents, avec ou sans selon les versions.
Polynômethumb|Courbe représentative d'une fonction cubique. En mathématiques, un polynôme est une expression formée uniquement de produits et de sommes de constantes et d'indéterminées, habituellement notées X, Y, Z... Ces objets sont largement utilisés en pratique, ne serait-ce que parce qu'ils donnent localement une valeur approchée de toute fonction dérivable (voir l'article Développement limité) et permettent de représenter des formes lisses (voir l'article Courbe de Bézier, décrivant un cas particulier de fonction polynomiale).
Complexité paramétréeEn algorithmique, la complexité paramétrée (ou complexité paramétrique) est une branche de la théorie de la complexité qui classifie les problèmes algorithmiques selon leur difficulté intrinsèque en fonction de plusieurs paramètres sur les données en entrée ou sur la sortie. Ce domaine est étudié depuis les années 90 comme approche pour la résolution exacte de problèmes NP-complets. Cette approche est utilisée en optimisation combinatoire, notamment en algorithmique des graphes, en intelligence artificielle, en théorie des bases de données et en bio-informatique.
Théorie de la complexité (informatique théorique)vignette|Quelques classes de complexité étudiées dans le domaine de la théorie de la complexité. Par exemple, P est la classe des problèmes décidés en temps polynomial par une machine de Turing déterministe. La théorie de la complexité est le domaine des mathématiques, et plus précisément de l'informatique théorique, qui étudie formellement le temps de calcul, l'espace mémoire (et plus marginalement la taille d'un circuit, le nombre de processeurs, l'énergie consommée ...) requis par un algorithme pour résoudre un problème algorithmique.
Extension abélienneEn algèbre générale, plus précisément en théorie de Galois, une extension abélienne est une extension de Galois dont le groupe de Galois est abélien. Lorsque ce groupe est cyclique, l'extension est dite cyclique. Toute extension finie d'un corps fini est une extension cyclique. L'étude de la théorie des corps de classes décrit de façon détaillée toutes les extensions abéliennes dans le cas des corps de nombres, et des corps de fonctions de courbes algébriques sur des corps finis, ainsi que dans le cas des corps locaux (Théorie du corps de classes local).
ComplexitéLa complexité caractérise le comportement d'un système dont les composants interagissent localement et de façon non linéaire, ce qui se traduit par un comportement difficilement prédictible. La complexité peut donc caractériser un système "composé d'un grand nombre d'éléments interagissant sans coordination centrale, sans plan établi par un architecte, et menant spontanément à l'émergence de structures complexes" (Alain Barrat, directeur de recherche au Centre de physique théorique de Marseille); mais aussi caractériser des systèmes composés de peu d'éléments (voir le chaos déterministe).