In graph theory, an adjacent vertex of a vertex v in a graph is a vertex that is connected to v by an edge. The neighbourhood of a vertex v in a graph G is the subgraph of G induced by all vertices adjacent to v, i.e., the graph composed of the vertices adjacent to v and all edges connecting vertices adjacent to v. The neighbourhood is often denoted N_G (v) or (when the graph is unambiguous) N(v). The same neighbourhood notation may also be used to refer to sets of adjacent vertices rather than the corresponding induced subgraphs. The neighbourhood described above does not include v itself, and is more specifically the open neighbourhood of v; it is also possible to define a neighbourhood in which v itself is included, called the closed neighbourhood and denoted by N_G [v]. When stated without any qualification, a neighbourhood is assumed to be open. Neighbourhoods may be used to represent graphs in computer algorithms, via the adjacency list and adjacency matrix representations. Neighbourhoods are also used in the clustering coefficient of a graph, which is a measure of the average density of its neighbourhoods. In addition, many important classes of graphs may be defined by properties of their neighbourhoods, or by symmetries that relate neighbourhoods to each other. An isolated vertex has no adjacent vertices. The degree of a vertex is equal to the number of adjacent vertices. A special case is a loop that connects a vertex to itself; if such an edge exists, the vertex belongs to its own neighbourhood. If all vertices in G have neighbourhoods that are isomorphic to the same graph H, G is said to be locally H, and if all vertices in G have neighbourhoods that belong to some graph family F, G is said to be locally F. For instance, in the octahedron graph, shown in the figure, each vertex has a neighbourhood isomorphic to a cycle of four vertices, so the octahedron is locally C4. For example: Any complete graph Kn is locally Kn-1. The only graphs that are locally complete are disjoint unions of complete graphs.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (12)
MATH-448: Statistical analysis of network data
A first course in statistical network analysis and applications.
MATH-261: Discrete optimization
This course is an introduction to linear and discrete optimization. Warning: This is a mathematics course! While much of the course will be algorithmic in nature, you will still need to be able to p
CS-250: Algorithms I
The students learn the theory and practice of basic concepts and techniques in algorithms. The course covers mathematical induction, techniques for analyzing algorithms, elementary data structures, ma
Afficher plus
Séances de cours associées (45)
Modèles de propagation épidémique
Couvre les modèles classiques de propagation et de dynamique épidémiques sur des réseaux avec des exemples.
Présentations polygonales: Classification des surfaces
Explore la classification des surfaces en fonction des présentations polygonales et de l'identification des côtés et des sommets.
Sparsest Cut : le théorème de Bourgain
Explore le théorème de Bourgain sur la coupe la plus clairsemée dans les graphes, en mettant l'accent sur la sémimétrie et l'optimisation des coupes.
Afficher plus
Publications associées (87)
Concepts associés (23)
Graphe fortement régulier
En théorie des graphes, qui est un domaine des mathématiques, un graphe fortement régulier est un type de graphe régulier. Soit G = (V,E) un graphe régulier ayant v sommets et degré k. On dit que G est fortement régulier s'il existe deux entiers λ et μ tels que Toute paire de sommets adjacents a exactement λ voisins communs. Toute paire de sommets non-adjacents a exactement μ voisins communs. Un graphe avec ces propriétés est appelé un graphe fortement régulier de type (v,k,λ,μ).
Coloration gloutonne
droite|vignette|upright=1.4| Deux colorations gloutonnes du même graphe couronne pour des ordres différents sur les sommets. La numérotation de droite se généralise aux graphes bicolores à n sommets, et l'algorithme glouton utilise couleurs. Dans l'étude des problèmes de coloration de graphes en mathématiques et en informatique, une coloration gloutonne ou coloration séquentielle est une coloration des sommets d'un graphe obtenue par un algorithme glouton qui examine les sommets du graphe en séquence et attribue à chaque sommet la première couleur disponible.
Liste d'adjacence
thumb|Pour chaque sommet, la liste d'adjacence est représentée en jaune. En algorithmique, une liste d'adjacence est une structure de données utilisée pour représenter un graphe. Cette représentation est particulièrement adaptée aux graphes creux (c'est-à-dire peu denses), contrairement à la matrice d'adjacence adaptée aux graphes denses. La liste d'adjacence d'un graphe non orienté, est la liste des voisins de chaque sommet. Celle d'un graphe orienté est typiquement, pour chaque sommet, la liste de nœuds à la tête de chaque arête ayant le sommet comme queue.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.