ÉpitaxieL'épitaxie est une technique de croissance orientée, l'un par rapport à l'autre, de deux cristaux possédant un certain nombre d'éléments de symétrie communs dans leurs réseaux cristallins. On distingue l'homo-épitaxie, qui consiste à faire croître un cristal sur un cristal de nature chimique identique, et l'hétéro-épitaxie, dans laquelle les deux cristaux sont de natures chimiques différentes. Étymologiquement, « épi » en grec signifie « sur » et « taxis », « arrangement ».
Épitaxie en phase vapeur aux organométalliquesL'épitaxie en phase vapeur aux organométalliques (EPVOM, aussi connue sous les acronymes anglophones MOVPE — metalorganic vapor phase epitaxy ou MOCVD — metalorganic chemical vapor deposition, terme plus général) est une technique de croissance cristalline dans laquelle les éléments à déposer, sous forme d'organométalliques ou d'hydrures, sont amenés vers le substrat monocristallin par un gaz vecteur. Cette technique de croissance est particulièrement prisée dans l'industrie des semi-conducteurs III-V en raison de la bonne reproductibilité et des fortes vitesses de croissance accessibles.
SpectroscopieLa spectroscopie, ou spectrométrie, est l'étude expérimentale du spectre d'un phénomène physique, c'est-à-dire de sa décomposition sur une échelle d'énergie, ou toute autre grandeur se ramenant à une énergie (fréquence, longueur d'onde). Historiquement, ce terme s'appliquait à la décomposition, par exemple par un prisme, de la lumière visible émise (spectrométrie d'émission) ou absorbée (spectrométrie d'absorption) par l'objet à étudier.
Spectroscopie RamanLa spectroscopie Raman (ou spectrométrie Raman) et la microspectroscopie Raman sont des méthodes non destructives d'observation et de caractérisation de la composition moléculaire et de la structure externe d'un matériau, qui exploite le phénomène physique selon lequel un milieu modifie légèrement la fréquence de la lumière y circulant. Ce décalage en fréquence dit l'effet Raman correspond à un échange d'énergie entre le rayon lumineux et le milieu, et donne des informations sur le substrat lui-même.
Quantum dot displayA quantum dot display is a display device that uses quantum dots (QD), semiconductor nanocrystals which can produce pure monochromatic red, green, and blue light. Photo-emissive quantum dot particles are used in LCD backlights or display color filters. Quantum dots are excited by the blue light from the display panel to emit pure basic colors, which reduces light losses and color crosstalk in color filters, improving display brightness and color gamut.
Semi-conducteur à large bandevignette|Schéma d'un semi-conducteur à large bande Un semi-conducteur à large bande est un semi-conducteur dont la largeur de la bande interdite, entre la bande de valence et la bande de conduction, est significativement plus importante que celle du silicium. Le seuil exact dépend du domaine d'utilisation. Commercialement, du fait de ses caractéristiques et de son abondance, le silicium est le semi-conducteur le plus utilisé. Les composants électroniques basés sur le silicium peuvent cependant présenter des limites fonctionnelles.
Spectroscopie par transformée de FourierLa spectroscopie par transformée de Fourier est une technique de mesure par laquelle les spectres sont collectés sur la base de mesures de la cohérence d'une source radiative, utilisant le domaine temporel ou le domaine spatial des rayonnements électromagnétiques ou autre. Elle peut être appliquée à plusieurs types de spectroscopie dont la spectroscopie optique, la spectroscopie infrarouge (FTIR, FT-NIRS), la résonance magnétique nucléaire (RMN) et l'imagerie spectroscopique à résonance magnétique (MRSI), la spectrométrie de masse et la spectroscopie par résonance paramagnétique électronique.
Imagerie spectroscopique proche infrarougeL'imagerie spectroscopique proche infrarouge fonctionnelle (ISPIf, en anglais Near Infrared Spectroscopic Imaging, NIRSI ou functional near-infrared imaging, fNIR) ou spectroscopie proche infrarouge fonctionnelle (SPIRf) est l'application à l' de la spectroscopie proche infrarouge. Cette technique consiste à mesurer de l'oxygénation d'une zone du cerveau afin d'en déduire son activité. Les tissus humains sont relativement transparents à la lumière dans la gamme du proche infrarouge (entre 700 et ) qui peut donc les traverser sur plusieurs centimètres, on parle de fenêtre optique du spectre.
Tomographie en cohérence optiquevignette|Image OCT d'un sarcome La tomographie en cohérence optique ou tomographie optique cohérente (TCO ou OCT) est une technique d' bien établie qui utilise une onde lumineuse pour capturer des images tridimensionnelles d'un matériau qui diffuse la lumière (par exemple un tissu biologique), avec une résolution de l'ordre du micromètre (1 μm). La tomographie en cohérence optique est basée sur une technique interférométrique à faible cohérence, utilisant habituellement une lumière dans l'infrarouge proche.
Focus stackingLe focus stacking (anglicisme), parfois traduit par « empilement de mises au point », est un procédé consistant à combiner plusieurs images dont le plan focal varie, pour donner une image dotée d'une plus grande profondeur de champ qu'avec une image unique. On obtient ainsi des images qui seraient physiquement impossibles à réaliser avec des moyens photographiques classiques. Il est particulièrement bien adapté à la photographie numérique, et aux situations où une image unique a une très courte profondeur de champ, comme en macrophotographie et photomicrographie.