Robustesse (statistiques)En statistiques, la robustesse d'un estimateur est sa capacité à ne pas être perturbé par une modification dans une petite partie des données ou dans les paramètres du modèle choisi pour l'estimation. Ricardo A. Maronna, R. Douglas Martin et Victor J. Yohai; Robust Statistics - Theory and Methods, Wiley Series in Probability and Statistics (2006). Dagnelie P.; Statistique théorique et appliquée. Tome 2 : Inférence statistique à une et à deux dimensions, Paris et Bruxelles (2006), De Boeck et Larcier.
Apprentissage superviséL'apprentissage supervisé (supervised learning en anglais) est une tâche d'apprentissage automatique consistant à apprendre une fonction de prédiction à partir d'exemples annotés, au contraire de l'apprentissage non supervisé. On distingue les problèmes de régression des problèmes de classement. Ainsi, on considère que les problèmes de prédiction d'une variable quantitative sont des problèmes de régression tandis que les problèmes de prédiction d'une variable qualitative sont des problèmes de classification.
Classe d'EulerEn topologie algébrique, la classe d’Euler est une classe caractéristique d'un fibré vectoriel réel orienté. Elle mesure l’obstruction à trouver une section d’un fibré qui ne s’annule pas. Cette notion trouve son origine dans la théorie de l'homologie. Soit ξ un fibré vectoriel réel orienté de rang sur une variété compacte orientée de dimension . Une section générique de ξ est transverse à la section nulle. Par conséquent, le lieu de ses zéros est une sous-variété compacte sans bord orientée de dimension -, elle possède une classe d’homologie [] qui ne dépend pas du choix de la section.
Classe de PontriaguineEn mathématiques, les classes de Pontriaguine sont des classes caractéristiques associées aux fibrés vectoriels réels, nommées d'après Lev Pontriaguine. Les classes de Pontriaguine appartiennent aux groupes de cohomologie de degré un multiple de quatre. Soit E un fibré vectoriel réel au-dessus de M. La k-ième classe de Pontriaguine pk(E) est définie par : pk(E) = pk(E, Z) = (−1)k c2k(E ⊗ C) ∈ H4k(M, Z), où c2k(E ⊗ C) est la 2k-ième classe de Chern du complexifié E ⊗ C = E ⊕ iE de E ; H4k(M, Z) est le 4k-ième groupe de cohomologie de M à coefficients entiers.