Statistical assumptionStatistics, like all mathematical disciplines, does not infer valid conclusions from nothing. Inferring interesting conclusions about real statistical populations almost always requires some background assumptions. Those assumptions must be made carefully, because incorrect assumptions can generate wildly inaccurate conclusions. Here are some examples of statistical assumptions: Independence of observations from each other (this assumption is an especially common error). Independence of observational error from potential confounding effects.
LuminositéEn astronomie, la luminosité est la quantité totale d'énergie émise par unité de temps (le flux énergétique), par une étoile, une galaxie, ou n'importe quel autre objet céleste. Elle s'exprime en pratique en luminosité solaire ( = ). Le flux lumineux, qui mesure plus particulièrement l'émission en lumière visible, peut également s'exprimer sur une échelle logarithmique par la magnitude absolue. En astronomie, elle représente la quantité totale d'énergie rayonnée (dans le domaine de l'électromagnétisme) par unité de temps par un astre.
Geodesics on an ellipsoidThe study of geodesics on an ellipsoid arose in connection with geodesy specifically with the solution of triangulation networks. The figure of the Earth is well approximated by an oblate ellipsoid, a slightly flattened sphere. A geodesic is the shortest path between two points on a curved surface, analogous to a straight line on a plane surface. The solution of a triangulation network on an ellipsoid is therefore a set of exercises in spheroidal trigonometry .
LoxodromieUne loxodromie (du grec lox(o)- et -dromie course (δρόμος) oblique (λοξός), en anglais rhumb line), est une courbe qui coupe les méridiens d'une sphère sous un angle constant. C'est la trajectoire suivie par un navire qui suit un cap constant. Une route loxodromique est représentée sur une carte marine ou aéronautique en projection de Mercator par une ligne droite, mais elle ne représente pas la distance la plus courte entre deux points. En effet, la route la plus courte, appelée route orthodromique ou orthodromie, est un arc de grand cercle de la sphère.