Publication

Magnetization Reversal Dynamics in Ferromagnetic Semiconductors

Liza Herrera Diez
2011
Thèse EPFL
Résumé

This thesis is dedicated to the study of the magnetization reversal dynamics in compressively strained (Ga,Mn)As and differently functionalized (Ga,Mn)As materials. In the first part the domain wall dynamics of pure (Ga,Mn)As/GaAs materials is in the focus. The changes in the magnetic anisotropy energy landscape occurring as a function of temperature are monitored in detail by different experimental techniques. These measurements provide the necessary information for the identification of the temperature ranges corresponding to different magnetic anisotropy regimes. Knowing the biaxial anisotropy and uniaxial anisotropy dominated regimes the dependence of the domain wall dynamics on the magnetic anisotropy landscape is studied. Critical changes in domain wall alignment observed by Kerr microscopy are found upon changing from biaxial to uniaxial anisotropy. These changes could be partially attributed to the tendency of the system to minimize magnetic free poles at the domain boundaries. To complement the space resolved studies of the magnetization reversal, magnetic time relaxation effects are addressed. In particular the magnetic aftereffect in (Ga,Mn)As/GaAs is studied in detail. The irreversible aftereffect is evidenced as a critical reduction of the domain wall velocity with time under a constant applied magnetic field below coercivity. This time relaxation is tracked as a function of both time and magnetic field. The measurements show that the overall relaxation is composed of two relaxation processes acting in parallel at short and long time scales. By fitting these experimental results the values of the relaxation times of both relaxation processes were obtained. By this modeling also the values of the activation volumes for two independent (Ga,Mn)As materials are estimated. In the second part of this thesis the possibilities of tuning the electrical and magnetic properties of (Ga,Mn)As by volume and surface treatments are explored. As for the volume modification, oxygen species were incorporated into the (Ga,Mn)As films by means of exposure to an oxygen plasma. The incorporation of oxygen was evidenced by depth profile X-ray photoelectron spectroscopy. This treatment is found to weaken the ferromagnetism, visible as a reduction in the Curie temperature, and to hinder the electrical transport evidenced as an increase in the electrical resistance. In agreement with theories accounting for the hole mediated ferromagnetism in (Ga,Mn)As this behaviour was related to a hole compensation mechanism arising from the presence of oxygen impurities sitting in interstitial positions of the (Ga,Mn)As Zinc blende structure. In the last part, the modulation of the electrical and magnetic properties via surface functionalization is presented. The effects produced by the adsorption of molecular species on (Ga,Mn)As are similar to those found after oxygenation, namely a strong weakening of the magnetic properties and an increase in the values of the electrical resistance. However, in this case the distinctive feature is provided by the possibility of regulating the hole quenching effect by exploiting the additional degree of freedom provided by the chemical properties of the adsorbates. The adsorbate chosen for these experiments are dye molecules that absorb light in the visible range, in this way allowing for a light modulated interaction with the substrate. Using this concept is was possible to observe a modulation of the ferromagnetic transition temperature, the coercive field and the electrical resistance upon illumination. These observations provide a proof of principle for the realization of photo-sensitized (Ga,Mn)As devices where the magnetic properties can be regulated by light.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (34)
Champ coercitif
En science des matériaux, le champ coercitif d'un matériau ferromagnétique désigne l'intensité du champ magnétique qu'il est nécessaire d'appliquer à un matériau ayant initialement atteint son aimantation à saturation, pour annuler l'aimantation du matériau. Le champ coercitif est usuellement noté ou . Lorsque le champ coercitif d'un ferromagnétique est très élevé, le matériau est qualifié de dur.
Ferromagnétisme
Le ferromagnétisme est le mécanisme fondamental par lequel certains matériaux (fer, cobalt, nickel...) sont attirés par des aimants ou forment des aimants permanents. On distingue en physique différents types de magnétismes. Le ferromagnétisme (qui inclut le ferrimagnétisme) se trouve être celui à l’origine des champs magnétiques les plus importants : c’est celui qui crée des forces suffisamment importantes pour être senties et qui est responsable du phénomène bien connu de magnétisme dans les aimants de la vie quotidienne.
Aimantation
Dans la langue courante, l'aimantation d'un objet est le fait qu'il soit aimanté ou bien le processus par lequel il le devient. En physique, l'aimantation est de plus, et surtout, une grandeur vectorielle qui caractérise à l'échelle macroscopique l'orientation et l'intensité de son aimantation au premier des deux sens précédents. Elle a comme origine les courants microscopiques résultant du mouvement des électrons dans l'atome (moment magnétique orbital des électrons), ainsi que le moment magnétique de spin des électrons ou des noyaux atomiques.
Afficher plus
Publications associées (444)

Magnetism of Single Surface Adsorbed Atoms Studied with Radio-Frequency STM

Clément Marie Soulard

This thesis investigates the magnetic properties of single atoms and molecules adsorbed on thin magnesium oxide decoupling layers, grown on a silver single crystal. To address these systems experimentally, we use a low temperature scanning tunneling micros ...
EPFL2024

Molecular intercalation in the van der Waals antiferromagnets FePS3 and NiPS3

Bruce Normand, Ying Chen, Sheng Xu, Shuo Li, Xiaoyu Xu, Zeyu Wang, Weiqiang Yu

We have performed electrochemical treatment of the van der Waals antiferromagnetic materials FePS3 and NiPS3 with the ionic liquid EMIM-BF4, achieving significant molecular intercalation. Mass analysis of the intercalated compounds, EMIMx-FePS3 and EMIMx-N ...
Amer Physical Soc2024

Magnetic structure and magnetoelectric properties of the spin-flop phase in LiFePO4

Ellen Fogh, Paola Caterina Forino, Sofie Janas

We investigate the magnetic structure and magnetoelectric(ME) effect in the high -field phase of the antiferromagnet LiFePO 4 above the critical field of 31 T. A neutron diffraction study in pulsed magnetic fields reveals the propagation vector to be q = 0 ...
Amer Physical Soc2024
Afficher plus
MOOCs associés (32)
Fundamentals of Biomedical Imaging: Magnetic Resonance Imaging (MRI)
Learn about magnetic resonance, from the physical principles of Nuclear Magnetic Resonance (NMR) to the basic concepts of image reconstruction (MRI).
Fundamentals of Biomedical Imaging: Magnetic Resonance Imaging (MRI)
Learn about magnetic resonance, from the physical principles of Nuclear Magnetic Resonance (NMR) to the basic concepts of image reconstruction (MRI).
Basic Steps in Magnetic Resonance
A MOOC to discover basic concepts and a wide range of intriguing applications of magnetic resonance to physics, chemistry, and biology
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.