Apprentissage automatiqueL'apprentissage automatique (en anglais : machine learning, « apprentissage machine »), apprentissage artificiel ou apprentissage statistique est un champ d'étude de l'intelligence artificielle qui se fonde sur des approches mathématiques et statistiques pour donner aux ordinateurs la capacité d'« apprendre » à partir de données, c'est-à-dire d'améliorer leurs performances à résoudre des tâches sans être explicitement programmés pour chacune. Plus largement, il concerne la conception, l'analyse, l'optimisation, le développement et l'implémentation de telles méthodes.
Monoidal t-norm logicIn mathematical logic, monoidal t-norm based logic (or shortly MTL), the logic of left-continuous t-norms, is one of the t-norm fuzzy logics. It belongs to the broader class of substructural logics, or logics of residuated lattices; it extends the logic of commutative bounded integral residuated lattices (known as Höhle's monoidal logic, Ono's FLew, or intuitionistic logic without contraction) by the axiom of prelinearity. In fuzzy logic, rather than regarding statements as being either true or false, we associate each statement with a numerical confidence in that statement.
Apprentissage par renforcementEn intelligence artificielle, plus précisément en apprentissage automatique, l'apprentissage par renforcement consiste, pour un agent autonome ( robot, agent conversationnel, personnage dans un jeu vidéo), à apprendre les actions à prendre, à partir d'expériences, de façon à optimiser une récompense quantitative au cours du temps. L'agent est plongé au sein d'un environnement et prend ses décisions en fonction de son état courant. En retour, l'environnement procure à l'agent une récompense, qui peut être positive ou négative.
Computer experimentA computer experiment or simulation experiment is an experiment used to study a computer simulation, also referred to as an in silico system. This area includes computational physics, computational chemistry, computational biology and other similar disciplines. Computer simulations are constructed to emulate a physical system. Because these are meant to replicate some aspect of a system in detail, they often do not yield an analytic solution. Therefore, methods such as discrete event simulation or finite element solvers are used.
Logique de descriptionLes logiques de description aussi appelées logiques descriptives (LD) sont une famille de langages de représentation de connaissance qui peuvent être utilisés pour représenter la connaissance terminologique d'un domaine d'application d'une manière formelle et structurée. Le nom de logique de description se rapporte, d'une part à la description de concepts utilisée pour décrire un domaine et d'autre part à la sémantique basée sur la logique qui peut être donnée par une transcription en logique des prédicats du premier ordre.
Simulation de phénomènesLa simulation de phénomènes est un outil utilisé dans le domaine de la recherche et du développement. Elle permet d'étudier les réactions d'un système à différentes contraintes pour en déduire les résultats recherchés en se passant d'expérimentation. Les systèmes technologiques (infrastructures, véhicules, réseaux de communication, de transport ou d'énergie) sont soumis à différentes contraintes et actions. Le moyen le plus simple d'étudier leurs réactions serait d'expérimenter, c'est-à-dire d'exercer l'action souhaitée sur l'élément en cause pour observer ou mesurer le résultat.
Type-2 fuzzy sets and systemsType-2 fuzzy sets and systems generalize standard Type-1 fuzzy sets and systems so that more uncertainty can be handled. From the beginning of fuzzy sets, criticism was made about the fact that the membership function of a type-1 fuzzy set has no uncertainty associated with it, something that seems to contradict the word fuzzy, since that word has the connotation of much uncertainty. So, what does one do when there is uncertainty about the value of the membership function? The answer to this question was provided in 1975 by the inventor of fuzzy sets, Lotfi A.
Bandit manchot (mathématiques)vignette|Une rangée de machines à sous à Las Vegas. En mathématiques, plus précisément en théorie des probabilités, le problème du bandit manchot (généralisable en problème du bandit à K bras ou problème du bandit à N bras) se formule de manière imagée de la façon suivante : un utilisateur (un agent), face à des machines à sous, doit décider quelles machines jouer. Chaque machine donne une récompense moyenne que l'utilisateur ne connait pas a priori. L'objectif est de maximiser le gain cumulé de l'utilisateur.
Jeu vidéo de simulation économiquethumb|Écran d'OpenTTD, un jeu de simulation économique. Le jeu vidéo de simulation économique est un type particulier de jeu vidéo de gestion. Il simule généralement une entreprise et plus précisément les processus économiques qui entrent en jeu dans son fonctionnement. On parle également de , terme utilisé depuis la sortie de Sid Meier's Railroad Tycoon en 1990. Cartels and Cutthroats (1981) MULE (1983) Rails West!, chemin de fer (1984) SimCity, ville et urbanisme (1989) Sid Meier's Railroad Tycoon, chemin
Analyse prédictiveL'analyse (ou logique) prédictive englobe une variété de techniques issues des statistiques, d'extraction de connaissances à partir de données et de la théorie des jeux qui analysent des faits présents et passés pour faire des hypothèses prédictives sur des événements futurs. Dans le monde des affaires, des modèles prédictifs exploitent des schémas découverts à l'intérieur des ensembles de données historiques et transactionnelles pour identifier les risques et les opportunités.