Markov Random Fields (MRF) - Based Texture Segmentation for Road Detection
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Turning pass-through network architectures into iterative ones, which use their own output as input, is a well-known approach for boosting performance. In this paper, we argue that such architectures offer an additional benefit: The convergence rate of the ...
A large part of computer vision research is devoted to building models
and algorithms aimed at understanding human appearance and behaviour
from images and videos. Ultimately, we want to build automated systems
that are at least as capable as people when i ...
Object recognition is one of the most important problems in computer vision. However, visual recognition poses many challenges when tried to be reproduced by artificial systems. A main challenge is the problem of variability: objects can appear across huge ...
Object recognition is one of the most important problems in computer vision. However, visual recognition poses many challenges when tried to be reproduced by artificial systems. A main challenge is the problem of variability: objects can appear across huge ...
inspectors that walk over the track and check the defects on the rail surface, fasteners and sleepers. In the case of concrete sleepers, rail inspectors classify defects according to their size and occurrence over 20 sleepers. The manual inspection is erro ...
Unmanned Aerial Vehicles are becoming increasingly popular for a broad variety of tasks ranging from aerial imagery to objects delivery. With the expansion of the areas, where drones can be efficiently used, the collision risk with other flying objects inc ...
Object-centric learning has gained significant attention over the last years as it can serve as a powerful tool to analyze complex scenes as a composition of simpler entities. Well-established tasks in computer vision, such as object detection or instance ...
We introduce a novel approach that reconstructs 3D urban scenes in the form of levels of detail (LODs). Starting from raw data sets such as surface meshes generated by multi-view stereo systems, our algorithm proceeds in three main steps: classification, a ...
Single Domain Generalization (SDG) tackles the problem of training a model on a single source domain so that it generalizes to any unseen target domain. While this has been well studied for image classification, the literature on SDG object detection remai ...
We address the problem of segmenting anomalies and unusual obstacles in road scenes for the purpose of self-driving safety.The objects in question are not present in the common training sets as it is not feasible to collect and annotate examples for every ...